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1.0    Introduction 

A critical capability of the Laser Range Safety Tool (LRST) simulation is accurately modeling 
and predicting polarized power distributions reflecting from target missiles. At optical (visible 
and infrared) wavelengths, the classical radiance equations for radiometry are driven primarily by 
microscopic geometric effects. One normally expresses the scattering equations using the concept 
of the bidirectional reflectivity distribution fiinction (BRDF) (Reference 1) which captures all the 
detailed scattering physics for how light interacts, whether in reflection or transmission, with a 
complex material surface structure. We will discuss three BRDF modeling representations used 
in the LRST. The first, most important, and only one that should seriously be used for accurately 
modeling target radiometry was developed at the Environmental Research Institute of Michigan 
(ERIM) by J.R. Maxwell and J. Beard (Reference 2). This will be called the Maxwell-Beard 
(MB) BRDF. (Two other empirical analytic BRDF models will be presented for completeness.) 
The Phong BRDF model (Reference 3) is a simphstic but venerable empirical approach used for 
years in computer graphics. Finally, the Gaussian BRDF model is a variation on several similar 
useftil BRDF models for doing closed-form analytic analyses. These last two models are 
essentially two-parameter models with only very limited capability to capture otherwise complex 
scattering shapes. 

This is not a complete hst of available BRDF models currently used by the community for target 
signature prediction; we probably want to keep an open mind on incorporating other BRDF 
models in the fiiture. These three, however, are the currently accepted standard models being 
used by AFRL for several simulation efforts and those simulations which they support with a 
material properties database. A requirement before adopting a new BRDF model will be to get 
acceptance by the AFRL community that controls the development of the computer-aided design 
(CAD) target modeUng tool called the SoUds ModeUng Tool (SMT), and the companion 
material properties database called MATTER.DAT. It is important to recognize that LRST does 
not exist apart from an Air Force modeling tools and data inteUigence infrastructure. New BRDF 
physics models will require writing new code for LRST, as well as for all other simulation 
programs that use MATTER.DAT. Also, the new material properties would need to be measured, 
extracted into BRDF model parameter fits, and added to MATTER.DAT as configuration- 
managed data items. New and different BRDF models would not impact the CAD models per se, 
only the materials database, because the CAD models reference the materials (and hence the 
BRDF models) via material code numbers. 

We chose our modeling paradigm to be compatible with the AFRL Satellite Assessment Center 
(SatAC) modeUng work for several reasons. First, SatAC offers considerable existing modeling 
expertise, materials database resources, capabilities, and experience; it currently builds the only 
nationally validated satellite CAD models accepted by the National Air InteUigence Center 
(NAIC). When LRST is used operationally, it too will need to import only those target models 
that have been vaUdated, blessed, and configuration managed by NAIC. Second, SatAC does 
considerable high-energy laser (HEL) weapon vulnerability modeling using these same CAD 
models. Finally, this route will ultimately allow LRST to be applied to other HEL programs, such 
as the Space-Based Laser (SBL) or Tactical High Energy Laser (THEL) with the confidence that 
the target models will still be immediately compatible. 
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We will start with a general discussion of the BRDF and the usual approximations one makes. 
We derive the MB polarized BRDF equations in detail from first principles. Short equation 
presentations are then made for the Phong and Gaussian BRDFs. Next we discuss the algorithms 
to extract fitted BRDF parameters from measured laboratory BRDF data. For LRST type 
applications, the wavelength is very narrow band, and is centered at the laser wavelength, hi fact, 
all target materials should be directly measured at all the relevant Airborne Laser (ABL) system 
wavelengths. However, other signature application codes need to model the BRDFs at many 
other wavelength bands, whether the BRDF data are measured or not. Therefore, we need to 
discuss how to interpolate/extrapolate the BRDFs to other unmeasured wavelengths. In LRST we 
fiindamentally classify the scattered energy into two regimes, diffiise and specular. Diffiise goes 
into a fiill hemisphere, but specular goes predominantly into a restricted forward cone along the 
nominal specular direction. We will present algorithms that determine this effective specular lobe 
cone angle. 

2.0    The Bidirectional Reflectivity Distribution Function (BRDF) 

In the best of all situations we would have complete measurements for all possible combinations 
of wavelength, polarization, and incident and reflection geometry angles to accurately model the 
radiometric scatter for any material type and shape. Unfortunately this clearly is not possible due 
to the large number of variables, the relative difficulty and high cost of making precise BRDF 
measurements, and the unmanageable amount of digital data that would result. The BRDF is 
fiiridamentally driven by the physical state of random (isotropic or otherwise) surface roughness. 
This situation would therefore be fiirther compounded by the infinite variety of material finishes 
possible for a single material type (e.g., aluminum milled, brushed, polished, anodized, or even 
painted). For semi-transmissive materials or coatings such as plastic or paint, more than one 
BRDF is required to complete the polarized scatter model, making things even more 
complicated. 

While the possibilities for a physical BRDF are countless, most man-made materials manifest a 
BRDF fiinctional form that is relatively simple and well behaved. The scatter usually 
decomposes down into two basic forms - wide-angle depolarized diffuse, and narrow-angle 
polarized specular. Diffuse reflections mostly depolarize the reflected light, while specular 
reflections tend to preserve the incident polarization. It will be shown that the Maxwell-Beard 
BRDF model allows us to take a minimum number of measured material optical properties in the 
laboratory, and accurately predict the polarized scatter for any combination of source-receiver 
geometry, using first principles and reasonable approximations where necessary. The primary 
advantage of this model over other BRDF models that do limited parameter fits is its ability to 
usually reproduce the original measured BRDF data almost exactly, especially for the monostatic 
direction. Because the BRDF curves are measured, the model inherently tends to be self- 
correcting when the actual scattering physics deviates from the assumed underlying first principle 
processes within the basic equations. In other words, because the MB BRDF model uses look-up 
tables taken from measured data, it tends to capture scattering physics not originally contained in 
the starting equations. As we shall see, the MB BRDF formalism starts with a reasonable and 
rigorous physical model, and ends up being a good parameter fit model. 
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We will try to follow the basic theoretical development as presented by ERIM (Reference 2) in 
several of their older documents (monographs). We will endeavor to follow their original 
notation. So far, however, we have been unable to find a complete and modem set of ERIM 
documentation that discusses all the algorithms we will present here. And, while ERIM (starting 
with the work of Torrance & Sparrow, Reference 4) clearly estabhshed the basic BRDF 
equations, many important algorithms needed for using this model are either not documented, or 
are documented only in part by various other authors. For example, the method for deriving the 
BRDF at a wavelength at which the BRDF parameters have not been explicitly measured, is very 
much open to interpretation and personal inclination (Reference 5). 

No introductory BRDF discussion would be complete without the usual warnings about taking 
BRDF data, whether measured or simulated, too seriously. BRDF data apparently are very 
difficult to measure accurately, by anyone. Historically, round-robin measurement programs (in 
which a material sample is passed fi-om laboratory to laboratory to have its BRDF measured) do 
not return consistent data. Between laboratories there are the usual differences between 
mechanical resolution, aperture size, stray light, detector noise levels, how the sample is held 
(stationary, spun), where on the sample the laser spot is placed, calibration specimens, optics, and 
polarization elements. Finally, there is an issue with the exact, current, real-world state of a target 
material surface. How old is the surface finish? Has it been changed by weather, oxidation, 
handling, sand-blasting, or heat? Just how vahd are the accurately measured BRDFs that we use 
to do the simulation modeling? Do all targets of the same class really share the exact same 
BRDFs? 

This is not to say that we know littie about the target BRDFs. In general, a material's reflective 
property tends to become more diffuse with time. For example, it is difficult to maintain a clean 
shiny surface on a missile, especially if the missile is kept outside subject to weather. Therefore, 
if we use measured BRDF data fi-om pristine material coupons, we are likely to overestimate the 
specular and imderestimate the diffiise contributions. For the purposes of a safety analysis, this is 
probably adequate. We will make predictions closer to a hazard level in the specular directions, 
where it is the most important to be conservative, and slightly under-predict hazards in the less 
critical diffuse directions. We must be prepared for possible errors in the radiometry on the order 
of factors of 2 or more, due to our lack of knowledge of the exact target BRDFs. 

We should always strive to use the best engineering knowledge of the scenario and BRDFs. But 
we also need to recognize and accept some level of uncertainty in our simulation, balancing the 
simulation's fidehty against what we know about the uncertainties. 

2.1    First-Surface Scatter BRDF 

The MB BRDF model relies entirely on in-plane measurements. That is, the receiver sensor 
measures the reflected intensities at various scan positions in the plane of incidence of the laser 
source. The plane of incidence contains the incident laser Ught rays and the material surface 
normal vector. Classically the source is polarized with the electric vector axis either parallel (i.e., 
P polarization) or perpendicular (i.e., S polarization) to the plane of incidence. The receiver can 
also resolve the scattered Ught into one of these two directions using a linear polarizer. Usually 
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four in-plane scans are made to cover each combination: 5 to 5 {SS or 11), 5 to P (SP or 1|), P to 
P (PP or II), and P to 5 (PS or |1). From these measured data, MB model parameters are extracted 
and put into a material properties database. Simulation programs can then access the material 
properties, on a material code basis, and both reconstruct the BRDF for in-plane geometries, and 
predict (i.e., extend) the BRDF for out-of-plane geometries. 

Going back several hundred years, it was recognized that the surfaces of opaque materials 
reflected visible light from a large number of microscopic facets (micro-facets) inherent in 
randomly rough surfaces. The dominant effect is for light to specularly reflect off these little 
mirror facets (or sequins) in all directions, the angular spread being driven by the micro-facet tilt 
statistics. Since the micro-facets are very smooth at the microscopic level, the polarization then 
tends to follow the Fresnel laws of reflection. 

In fact, the primary 
assumption in the 
Maxwell-Beard BRDF 
model is that within the 
visible and infrared 
wavelength regions, the 
micro-facet reflection 
process is entirely 
specular, geometric (i.e., 
minimal wave effects), 
and driven by Fresnel's 
laws at the first air- 
material surface interface. 
Light is scattered out-of- 
plane by micro-facets 
tilted out of the plane of 
incidence, for instance. 
Figure   2.1   depicts  how 

Laser Source 

Average macroscopic 
surface profile 

.v. 

Bisecting micro-facet 
surface normals 

Micro-facets that reflect 
light to the sensor 

Opaque Material 

Figure 2.1. Only a Relatively Few Micro-facets Bisect the 
Directions from Source to Receiver 

only a relatively few (correctly tilted) micro-facets actually reflect light back to a sensor. 

These few physical assumptions seem to be well satisfied by most man-made machined materials 
with a fairly smooth finish. However, extremely rough surface finishes lead to complex multiple 
reflections of the light within the first-surface micro-structure, and hence both depolarize the 
light and spread the distribution of scattered light into all directions more uniformly (i.e., diffuse 
scatter). Extremely rough surfaces are not well modeled by the Maxwell-Beard first-surface 
BRDF model except where the derived parameters are especially crafted to follow a diffuse 
distribution. At the other extreme, when the first-surface becomes very smooth compared to the 
wavelength, wave effects begin to become more important than the geometric effects. Also, the 
MB BRDF model cannot easily handle mirror-like surface finishes (roughness very much less 
than the wavelength). Only optical elements such as mirrors and lenses have both smooth surface 
finishes and well-confrolled surface figures. Therefore, it is not likely that an exterior material for 
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Laser^ource S^isor j^-^^^^^^^^^ 

Pigment particles 
that reflect 

light to the sensor 

Clear dielectric 
Complex multiple \ / / / pigment binder 

reflection path 

Figure 2.2. Volumetric Scatter from Pigment Particles 

a missile will have a material finish that is optically shiny and which supports coherent far-field 
constructive interference. 

If the material is a metal, then light penetrates the first-surface to a depth on the order of only a 
few wavelengths. The entire scattering process is contained in just the single interaction of Ught 
with the opaque first-surface micro-facets. For paints, the first-surface both reflects and transmits 
most of the incident light into its bulk region. 

2.2    Volumetric Scatter BRDF 

Dielectric materials such as paints and plastics exhibit a more complex reflection mechanism. On 
a microscopic level, light can penetrate and undergo very complex multiple reflections off 
pigment particles suspended in the clear dielectric plastic binder within a shallow volumetric 
region behind the first-surface. The detailed interaction process would be extremely difficult to 
model, even with very comprehensive measured material property information (which of course 
never seems to be available). The MB BRDF model approximately captures this complex 
volumetric scatter physics by using two diffuse BRDF functional forms whose parameters are 
derived again fi-om the in-plane scan data. 

The net scatter from dielectric materials then includes two reflections, one due to the first-surface 
Fresnel reflection, and a second due to multiple reflections off pigment particles in the shallow 
volumetric region just below the first-surface. Figure 2.2 gives a notional depiction of how just 
one ray of Ught might scatter back to the sensor. 

The first-surface reflection, therefore, is again a function of the distribution of randomly tilted, 
specularly reflecting, dielectric micro-facets. Given the source and receiver directions, only those 
micro-facets whose local surface micro-facet normal bisects the incident and reflected directions 
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contribute to the instantaneous scatter measured at the receiver aperture. Thus, the scatter 
intensity is proportional to the number of correctly tilted micro-facets and the relative area they 
subtend. 

Fresnel's equations are used to handle the polarization effects. The first-surface scatter is 
assumed to be always polarized because Fresnel's equations do not provide for depolarization. 
When the first-surface becomes very rough (e.g., has deep grooves), light incident fi-om 
directions near normal tend to bounce more than once fi-om the highly tilted micro-facets. This 
both depolarizes and diffijsely distributes the emerging light, which contradicts the above 
assumption of single reflections off micro-facets that preserve polarization. Shifting this fraction 
of the scatter into the depolarized volumetric diffuse terms captures this effect. 

Contrary to MB assumptions, in reality wave effects are always present. A certain amount of 
diffraction always exists and tends to spread the specular lobe slightly. While the purely 
geometric assumption is violated (albeit only slightly for most materials), the model inherently 
recovers somewhat by relying on the actual measured scan curves, wave effects included. 

We can start our mathematical discussion by stating a usefiil definition of the BRDF when the 
incident light is collimated: 

8P. 

BRDF = p(^,^,^„^,) = ^ = il:£^a_«^ (sr-') (2.1) 

where. 

Sir = the incremental reflected radiance from a flat surface (W/m^-sr) 
^i = the incremental incident irradiance (W/m^) 
^i = the power incident on the differential area 5A 
^r = the power reflected into the incremental solid angle 6Qrec from area 5A (W) 
0i = the polar angle of the incident light (down from the local surface normal) 
^ = the azimuthal angle of the incident light (measured from some local in-plane axis) 
0r = the polar angle of the receiving aperture 
^ = the azimuthal angle of the receiving aperture 
SA = the differential area of the reflecting macroscopic surface (m^) 
SOrec = the differential solid angle subtended by the receiving aperture (sr) 

We will freely interchange our notation of the BRDF with p'. The BRDF stated in Equation 2.1 
is simply a ratio of reflected directional radiance to incident irradiance. We will want to add to 
our notion of the BRDF by keeping track of variables such as polarization, wavelength, material 
type, specular and diffuse contributions, and so forth. Notice that any dependence on the incident 
cone solid angle has been simplified to SPi/SA. For most laser illumination scenarios, certainly 
for the ABL ones, the incident light is collimated to within tens of micro-radians across the 
whole of the target, and extremely collimated locally. The effective BRDF for light sources such 
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as the sun with a finite extent (i.e., a finite incident soUd angle) can be constructed fi-om the 
colUmated BRDF if necessary. 

2.3   Assumptions and Approximations 

A real BRDF is typically a fijnction of a large number of variables, too large to manage without 
making some assumptions. Geometric variables include the azimuth and polar angles of the 
incident light; the azimuth and polar angles of the reflected direction; the local surface curvature; 
and the specific location on a surface element. Other important variables include wavelength 
band (which leads to an effective reflectivity), complex indices of refi-action, incident 
polarization state, receiver polarization sensitivity, material type or detailed microstructure, 
material finish state (e.g., smooth or rough), and shadow/masking effects. We typically have the 
capability to generate separate BRDF objects for different materials, at different wavelengths; 
however, directional or polarization effects are derived fi-om the basic measured BRDF data. To 
keep the amount of required supporting measured data manageable, we will need to make some 
assumptions and reasonable approximations. 

We will simplify our radiometric equations by first assuming that the geometry follows 
reasonably closely that encountered for the ABL scenarios of interest. We will always assume 
that the incident rays are parallel, with the same polarization state. This is the far-field 
assumption for the laser source. The difference in the incidence angles for rays at the nose or tail 
of a missile is tens of micro-radians, which is well below the angular spread of even a very shiny 
surface (e.g., specular lobe width of 0.1 degree). Likewise, we assume that the receiving aperture 
is at a sufficiently large distance from the scattering surfaces that all the reflected rays are 
essentially coUimated at the receiving aperture. This has a twofold importance in our equations. 
First, because the receiving aperture is again assumed in the far field of the scattering target, each 
unit vector along the reflected direction from each small scattering incremental area on the target 
to the receiving aperture is parallel to the other unit vectors. Second, the dimension of the 
collecting aperture is assumed to be much smaller than the BRDF angular spread. This ensures 
that we can accurately calculate the reflected intensities at the receiver aperture using a linear 
approximation. We calculate the irradiance at a single point, located at the center of the receiving 
aperture, and linearly scale it with aperture area, without doing a detailed spatial integration over 
the aperture area. These two assumptions allow us to reduce the number of spatial integrals and 
thereby increase efficiency without losing accuracy. The motivation is to increase execution 
speed, and making these approximations introduces negligible error in the radiometrics (and none 
in the BRDF). 

Next we need to assume that the BRDF is isotropic and invariant in several ways. We assume the 
BRDF is identical for the same material assignments for all target models. All assignments of 
0001 Aluminum Alloy, 2024-T3, Polished, for example, should render the same because the 
BRDF data are the same. This assumption breaks down when one considers the life history of a 
particular target in the real world unless it is somehow sealed off from the environment. We 
assume that the BRDF is invariant over the entire surface of the element it is assigned to. 
Variations in surface finish or color are assumed small for even large area coverage. We must 
assume that the micro-facet tilt distribution function is statistically isotropic in azimuth. This 
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removes any absolute azimuthal dependency of the BRDF. Some metal finishes, for example, 
tend to have striations that are machine-tool grooves. This tends to produce anisotropic BRDFs 
that vary with the azimuth angle that is tied to surface coordinates. The BRDFs we measure are 
all taken at room temperature and represent how the surface scatters light at normal temperatures. 
At extreme melting temperatures the BRDF is clearly going to make nonlinear changes. Usually, 
but not certainly, the color will turn darker and the surface will become rougher because of the 
degradations cause by elevated temperature. For the current version of LRST, we assume that the 
BRDFs are invariant with temperature. Each of these assumptions is fairly reasonable for most 
cases, though there are exceptions. Common techniques-such as texture mapping-do exist for 
handling local variations, but LRST, for now, will adhere to these isotropic assumptions and not 
implement more complex algorithms. 

A real BRDF is usually highly complex. The possibilities for scatter are literally endless. 
However, we need to reduce the complexity to something manageable in code. We assume that 
all BRDFs are well behaved and have a few common properties. We always use measured data 
where it exists. There is always a certain amount of data smoothing and averaging when 
extracting representative optical parameters. We always assume that the BRDF is separable into 
two components: a polarized first-surface specular lobe that scatters light into a cone about the 
nominal specular direction; and a depolarized hemispheric diffuse scatter that basically follows a 
Lambertian distribution, coming fi-om the volumetric region. We are basically considering just 
two common material types, metals and opaque paints or plastics. The out-of-plane scatter is 
either Lambertian, or derives fi-om those micro-facets that are tilted out-of-plane. In either case, 
all scatter is mostly a direct consequence of geometric reflection and not wave effects. 

We then assume that the BRDF will have approximately the same spatial distribution regardless 
of wavelength, as long as the wavelength is not too different from that used to measure the 
BRDF material properties. This allows us to interpolate a BRDF to a wavelength for which we 
have no measured data beyond the net directional hemispherical reflectivity (DHR). We shall 
borrow the BRDF spatial distribution fiinction and renormalize to the new reflectivity. We also 
need to recognize that it is the complex indices of refraction that determine the hemispherical 
reflectivity of metals. The indices likewise determine the first-surface reflectivity of dielectrics, 
but they tend to be wavelength invariant, meaning that the first-surface reflectivity remains at a 
constant low value for large wavelength shifts. The dominant reflection effect for paints and 
plastics is the bulk region scatter which is assumed Lambertian (or nearly so - see the MB model 
below), and is controlled by the bulk reflectivity. 

The BRDF is commonly measured for nominally flat surface profiles. Surface curvature 
radiometric effects are accounted for independenfly of the BRDF, by either analytically 
integrating around the curved part, or by evaluating the radiometrics at many locally flat 
differential areas (i.e., essentially numerically integrating). There is definitely a coupling between 
curvature and the specular reflection: a shiny cylinder reflects light into a thin bright ring around 
itself, whereas, a flat plate projects a small round spot. Diffiase surfaces, on the other hand, are 
affected less by local curvature because the fall-off occurs as only a cosine of the polar angle. We 
will still track the diffuse scatter for small locally flat areas. 
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Finally, we need to ensure that whatever the BRDF functional form, an integral of the outgoing 
scattered intensities over the hemisphere above the scattering surface, is equal to the measured 
hemispherical reflectivity. The hemispherical reflectivity is itself a function of wavelength, and is 
independently measured in the laboratory. We will need to address the normalization procedures 
for each of the BRDFs below, since this is the basis for our radiometric energy balance. The 
hemispherical reflectivity is related to the BRDF by 

DHR (0i„ ,A)= "'"""""'''     =        J BRDF • cos( e)d^ (2.2) 
"^1 hemisphere 

and can be expressed more completely as: 

DHR((^„,A)= I \BSJX{ei„,x,e,<p)-cos{e)-sm{e)-ded(p (2.3) 
0     0 

where we have indicated that the hemispherical reflectivity is a function of wavelength and the 
incident angle of the light. We use the notation DHR(^„,A), which stands for directional 
hemispherical reflectivity. This quantity is a function of wavelength, but it also changes with the 
angle of incidence for all materials. We will consider DHR (6^„ = 0,1) for normal incidence. 
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3.0    Derivation of the IVlaxwell-Beard pf BRDF formulation 

Consider an illumination-reflection-sensor geometry like that shown in Figure 3.1. The laser is 
assumed to present a uniform monochromatic collimated irradiance over the test sample surface; 
the sample is nominally flat and isotropic; and the sensor is located in the far field. The sensor 
has a small receiving aperture that subtends a relatively small but non-zero collecting solid angle 
SOr. 

Macroscopic average 
surface normal 

Bisecting 
micro-facet normal 

Laser Source 
# 

Sensor 

Figure 3.1. Basic Geometry and Notation for the BRDF Model Equations 

3.1    The Polarized Specular BRDF 

Let E(0fj,^)dQ^ represent a distribution function which gives the relative fi-action of the 
material surface area whose micro-facets are tilted relative to the macroscopic average surface 
normal, along a direction (ON,^), where these are the usual polar angles, and all within a small 
solid-angle cone Sn^. By our isotropic roughness assumption we realize in effect that 
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All micro-facet surface normals that fall within a small solid angle SQN centered about the 
bisecting direction H, between Ught source and receiver, will scatter Ught (geometrically) into 
the receiver aperture solid angle such that (cf Figure 3.1): 

da, = 4cos{/3)snN        (sr) (3.1) 

While Equation 3.1 might not be obvious at first glance, it is a consequence of the optical gains 
for differential tilts of the micro-facet mirrors. We have shown (Reference 6) that a mirror that 
moves an angle ^i^„,y„^ in-plane of source and receiver causes a change in the reflected ray line 

of sight (LOS) of S0j^os = 2 • ^^„,v„,, exactly. A mirror that moves an angle S0„i,,„, cross-plane of 

source and receiver causes a change in the reflected ray LOS of 30^^^^ = 2 • cos(;ff) • S0^i„„,, where 

pis the angle between the incident (or reflected) LOS and the bisecting micro-facet normal H, and 
where small angular changes are assumed vaUd. A product of these two terms leads directly to 
Equation 3.1 above. 

For a given unit surface area with light incident upon it, the micro-facets whose normals are tilted 
at an angle 0N with respect to the average macroscopic surface normal will reflect light into the 
receiver aperture solid angle. Typically, only a small fraction of the total surface area has micro- 
facets that satisfy this condition. For now, assume that all such micro-facets are neither shadowed 
nor masked. For a small surface area element 8A, the net amount of that surface area that has 
micro-facets tilted toward the receiver (i.e., along 0N, 8) is defined as: 

A{0^,<p) = -E{0^,(p)-dA-Sa,{m^) (3.2) 

The net power incident on these micro-facets is simply: 

Pface.= ^, ^^\^-A{0„<p)-cos{P)       (watts) (3.3) 
■^ <S4cos(^,) 

8P. 
where we recognize  '-   as the irradiance perpendicular to the beam, and where 

&4cos(^,.) 

A{0j^,(p) ■ cos(/?) is the projected area of the participating micro-facets. 
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3.2    The Fresnel Reflection Function 

We assume that the fundamental mechanism for reflection at the first air-material surface, and 
therefore for all polarization effects, is driven by Fresnel's equations. Consider the situation of 
external reflection where light is incident fi-om the exterior of a target surface and where the 
incident medium is either air or vacuum (i.e., n = 1.0), and the second medium is either a 
dielectric or a metal. When the angle of incidence for light flux is 6|, the refi-action/reflection 
angle is 0r and the complex index of refi-action is N, then Snell's law predicts the angle of 
refi-action/reflection to be: 

^■=N = „-,-, (3.4) 
sin(^^) ^     ^ 

Nis independent of the angle of incidence, and given in the usual optics form N = n-iK , where 
K is always positive. The pair of complex indices of refraction («, /c) must reside in the first 
quadrant as long as the incident medium has an index of refraction lower than that of the bulk 
material. Thin layers are not considered here, so the index of refraction applies to the bulk of the 
material and does not depend on its thickness. Index pairs in the second and third quadrants (i.e., 
where n is negative) should not be allowed, since light would then be incident at a surface where 
the material is in an excited state and hence the reflectance would be greater than 1. Typically, 
clear dielectrics exhibit an absorption index /f equal to or nearly equal to zero. Metals, on the 
other hand, have a nonzero K and are opaque (absorbing). In the infrared, some dielectrics can 
also become absorbing, and therefore would probably not show the usual diffiise bulk region 
scatter. 

The reflectance fimctions for a smooth dielectric (or for a small differential area of dielectric on 
the microscopic level) with a monochromatic beam incident at an oblique angle J3 is designated 
by Rxxffi), where we shall use the notation Rss for the reflectivity when the incident and reflected 
electric field vectors are perpendicular to the plane of incidence, and RPP for the reflectivity 
when the incident and reflected electric field vectors are parallel to the plane of incidence. The 
rigorous formulas for the reflected flux are: 

^.(/>)=<'-°''^^»:^^: (3.5) 
(a + cos{ fi)y + b^ ^    ' 

''^^^       ''   {a + sm{P)-X2in{P)y+b' ^^'^^ 

where the a and b intermediate terms above are derived from: 

x = n^ -K^ -sm^{P) (3.7) 
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= -yjx^ + 4 • n^ ■ K (3.8) 

a 
2 _ x+ y (3.9) 

y-x (3.10) 

Notice, in theory, there is no cross-coupUng between the two orthogonal linear polarization 
states: 

Rspifi) = Rps(^) = 0 (3.11) 

Later we discuss mechanisms for depolarization where there will exist cross-coupled states. 
Figures 3.2 through 3.5 present some typical Fresnel curves calculated using the above equations. 
The calculated curves compare exactly to those published by HoU (Reference 7). 

Fresnel Reflectance Curves: n = 0.5 

10 20 30 40 50 60 
Angle of Incidence (degrees) 

Figure 3.2. Parametric Fresnel Reflectance Curves for Various Combinations 
of a = 0.5: and K = 0, 0.5,1,2, 3, 4; Rss is the dotted upper 
curve, Rpp is the solid lower curve. 

BRDF Reference Manual 

-13- 



1 

0.9 

0.8 

0.7 

0,0.6 
u c 

^ 0.4 

0.3 

0.2 

0.1 

0 

Fresnel Reflectance Curves: n = 1 

^ 1 ..^^ ..^^ 

k'"" <c 
rs-.,,,,,.^'" 

»**^ / 
k=" 

xr^ 
.,->^ 

L/ .c •M  

T^ 
"^^-^ 

^ " /  / 

'  / 

P" V^ 

k=1 

1*'  

^ 

k = 0 
y^ 

10 20 30 40 50 60 70 
Angle of Incidence (degrees) 

80 90 

Figure 3.3. Fresnel curves for n = 1.5 and K= 0, 0.5,1, 2, 3, 4 
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Figure 3.4. Fresnel curves for n=2.0 and K = 0, 0.5,1,2,3, 4 

14 



The effective Fresnel reflectivity for unpolarized natural light, or circularly polarized light, is the 
arithmetic mean of the two reflectivities: 

unpolar ^ \   •      / 

For angles where Rss is greater than Rpp, unpolarized incident light gets shghtly polarized. The 
degree of this polarization, P, is defined as: 

p^^ss-^pp (3 13) 
^SS '^ ^PP 

While the equations for the Fresnel reflectivities above are simple enough to calculate 
numerically, there are some interesting aspects worth discussing. 

At normal incidence, the S and P reflectivities should be the same: 

R,AO) = RssiO) = ^^^^^^ (3.14) 

The normal incidence reflectivity is a function of the two indices. It is usefial to solve for either n 
or fc, given the normal incidence reflectivity i?(0) and the other index. For instance, the complex 
index K is: 

i     i-ff(o) 

where we take only the positive root. Likewise we can solve for the real index n by: 

^^    l + i?(0)^ If l + /?(0) 
l-R(0) 

-(K^+l) (3.16) 
\-R(0)j 

where either root is valid, but the smaller is probably the useful one. 

Upon reflection, each component of the electric field undergoes a phase retardation given by: 

tw^..  ^    '2cos{fi)-[(n'-K')b-2-n-Ka] 

tan(^^.) = -^|f^^^ (3.18) 
cos {p) — {a  +D ) 

The relative phase retardation between the P and 5 directions upon reflection is given by: 
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A^P5 = ^p ~^s - ^^ 
-I tan(<S^p)-tan(^^) 

1 + \xai{5^p) ■ tan(^j) 
(3.19) 

A^pj = tan' 2-6sin(y?)tan(;g) 
(3.20) 

To get a feel for typical Fresnel equations we will plot a few quantities. Figure 3.6 shows a set of 
typical Fresnel curves, including the relative phase shift, where n = 2.01 and K= 2.05. 

The phase shift curve starts at 180 degrees and goes to zero at grazing incidence. The Brewster 
angle is where Rpp has a minimum (about 70 degrees here). 

1 m\ f^cfl^^^^ 

0.800- 

0£00- 

0.400-: 

0.200- 

ojxn 

standard (n Jc) Fresnd Reftectivty 

20i) 
Incident Angle (deg) 

60.0 SOD 

Figure 3.5. Typical Fresnel Curves Rss (green), Rpp (red), R„„p„,ar (black); the relaHve phase 
shift 2kpps is shown dropping from ntoO (yellow-phase angle not labeled); the 
degree of polarization is shown at the bottom (magenta); the ratio o/Rp/Rs is 
shown starting from the upper left (purple) (n = 2.01, K = 2.05). 

BRDF Reference Manual 

-16- 



In Figure 3.7, a set of isoreflectance curves is drawn as a function of the two components of the 
refractive index. The red dot represents the index for the material displayed in Figure 3.9. 
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Figure 3.6. Isoreflectance Curves for Varying Normal Incidence Reflectivity 

The curves are circles of constant normal incidence reflectivity (given by Equation 3.14). Usually 
the real component of the refractive index is reported as a relatively small value (less than 3). 
This means that the complex index component K changes rapidly with increasing normal 
incidence reflectivity for a constant real index. 

BRDF Reference Manual 

-17- 
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Figure 3.7. Parametric Families of Fresnel Curves for Varying n, k, with 
Constant Normal Incidence Reflectivity (Ro = 40%); the effect oj 
larger index n is to push the Brewster angle to the right and depress 
the Rpp reflectance. 

Figure 3.8 shows a family of Fresnel curves in which n and «• were again varied such that the 
normal incidence reflectance R(0) remains constant (i.e., follow the 40% isoreflectance curve in 
Figure 3.7). Notice how the Brewster angle quickly changes from small values when the real part 
of the index is small, to large angles as n increases. For example, when n is about 0.3, the 
Brewster angle is about 30 degrees, whereas when n is about 1.0, the Brewster angle is almost 60 
degrees. 
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Figure 3.8. Variation of the Brewster Angle VSO Real Index n (Ro=40%) 

Figure 3.9 directly shows the variation of the Brewster angle when n (and k) are changed to keep 
the normal incidence reflectivity constant (Ro = 40%). Again, notice how the Brewster angle 
does not change much for values of n above about 1.0. Said differently, the Brewster angle seems 
to be a strong function of the real index when n is less than 1.0. Thus, while there are many index 
pairs that satisfy the normal incidence reflectivity, different pairs produce different Brewster 
angles and different Rs and Rp curves, the most pronounced variation being in the Rp curves (cf 
Figures 3.8 and 3.9). 

3.3    The First-Surface BRDF as a Function of the Tilt Distribution 
Function 

Solving Equation 3.1 for SON and substituting it into Equation 3.2 gives the net surface area that 
bounces light into the receiver aperture geometrically: 

A(,ej,,(p) = -E{9^,(p)-8A 
sa. 

(m') 4C0s(yff) 

Substituting this area into Equation 3.3 gives the amount of incident power at the micro-facets: 

da 

(3.21) 

cos(^,.) 4 
(watts) (3.22) 
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The amount of power that is reflected depends on the incident polarization state. Knowing the 
Fresnel reflectance /?xv (where A" can be S or P), we can determine the amount of power collected 
by the receiver aperture: 

^Pr=SPface,s  '^XX  = T^'^(^N ,9>) ~-R^X (watts)       (3.23) cos(6',.) 4 

Finally, rearranging Equation 3.23 to look like the right-hand side of Equation 2.1 for the BRDF, 
we get: 

p'(0iA>Ms) = Rxxi",>^,fi)- f^y ,^,   (sr-') (3.24) 

where ^ is the incident angle of the light with the average macroscopic surface normal, Or is the 
angle the receiver LOS makes with the surface normal, pis the angle between the bi-section unit 
vector fl' and either the incident or reflected LOS unit vectors, and ON is the angle H makes with 
the surface normal. The bi-section unit vector H is the same as the micro-facet local normal: 

H=-^—^ (3.25) 
V.+V 

where V^ is the unit vector LOS to the laser source, and V^ is the unit vector LOS to the receiver 
aperture. The angle ^^ is easily derived from the geometry: 

0^=cos''iHoN) (3.26) 

where N is the macroscopic surface normal. The angle fi is also easily derived from the 
geometry: 

/? = cos-'(^oJ^.) = cos->(^oJ?) (3.27) 

To work the fiilly polarized reflection. Equation 3.24 is needed twice, once for each incident 
electric field component (i.e., Rss and Rpp). For the LRST application, we assume for now that 
the incident laser beam polarization state is circularly polarized. The first-surface Fresnel 

reflectance then would be the mean of the S and P, and hence /?^ = /J„„p„„, = ^^^ '^ ^PP (Equation 

3.12). 

Equation 3.24 seems easy enough to use in a rendering algorithm. Only three quantities need to 
be measured: the two indices of refraction (n, K), and the tilt distribution fimction S(6>^). In the 
laboratory we can only infer S(^^) by making in-plane monostatic (sometimes called a zero 
bistatic, or quasi-monostatic) BRDF scans. In the monostatic measurement configuration, the 
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incident and reflected angles are equal to each other and to ON- Equation 3.24 can then be 
inverted to give: 

^{O,) = p'„„M).^:0^ (sf') (3.28) 

where P'„O„O{0N) represents the measured monostatic BRDF data. The Fresnel reflectivity in the 
denominator is for normal incidence, and hence is independent of polarization state. Typically in 
the rendering algorithm, H(^^) is simply a look-up table of values derived from measured zero 

bistatic BRDF scans. 

This discussion appUes when the first-surface of the material is relatively smooth such that only a 
single light ray boimce is vaUd (which is usually the case for many materials). If, however, the 
first-surface is very rough such that multiple bounces occur, or the material is a semi-transparent 
dielectric paint, then a depolarized reflection process occurs too. In this case Equation 3.28 does 
not correctly give the tih distribution function H(^jv). In Section 5 we will address in detail how 

to properly extract the tilt distribution fimction from the measured data. 

Notice that S(^^) is a purely geometric tilt distribution function. For surfaces that are 

reasonably smooth, we should be able to integrate over all the micro-facet areas, as projected 
down to the flat material surface plane, and get unity: 

ff/2 

|JH(6')cos(6')</n = 2;r- jH((9)cos((9)sin((9)-rf(9 « 1 (3.29) 
hemisphere 0 

Of course, as the surface becomes rougher, then this normalization might begin to break down 
because S(^;v) can probably no longer be properly measured due to shadow/masking effects. 

Exfremely rough surface finishes, for which the surface is not a simple set of tilted facets, should 
certainly not follow the normaUzation of Equation 3.29. However, this is generally acceptable as 
long as the normaUzation of Equation 2.3 is satisfied. In general, and except for extremely rough 
surfaces. Equation 3.29 should hold up. 

As we will present later in Section 5, we do not actually derive the tilt distribution function 
H(^^) directly. Instead, because we do not explicitly know the indices of refraction, we must 

solve for the product of aiO,^) and the normal incidence Fresnel reflectance: 

■E{e^) ■ R(0) = 4 ■ p'„„„Ad^) ■ cos^(^^)        (sr-') (3.30) 

If we substitute Equation 3.30 into Equation 3.29, we get: 

Ri0)«2^-''l 4-p'„„„,(0^)-cos\0)-sm(0)-de (3.31) 
0 

Here again, this is only as good as the normalization in Equation 3.29. 
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Before we leave this discussion, we need to finalize our functional form for the specular BRDF. 
We will need to modify the form of Equation 3.24 to include the normal incidence Fresnel 
reflectance into the tilt distribution function as: 

/?' = 
R(n^,K^,li = Q).E{e^) 1 

cos((9,)-cos((9,) 
(Sf') (3.32) 

While one expects the normal incidence reflectance /?(0) to be the same in the numerator and 
denominator, this is not a requirement. We emphasized this by the subscripts in Equation 3.32 
for the complex indices. The effective reflectivity in the BRDF is contained in the middle term, 
commonly called the bi_factor. hi the materials database file (i.e., MATTER.DAT), the tabulated 
data has the keyword BISTATIC. It is the tabulated tilt distribution function essentially scaled by 
a reflectivity constant. The indices for the Fresnel reflectance in the bifactor will never need to 
be directly known. 

The leading Fresnel polarized reflectance function is now a normalized function. Figure 3.10 

Extracted NofiwiiBCI Fresnel Curvea 
1.4000- 

1.2000- 

OCa.Deta 

OJOOOO 20.0000 40X1000 
IncUMtceAnglertlacrt 

60J)000 OOJOOOO 

Figure 3.9. Normalized Fresnel Curves for n=1.5 and tc=3.7 

shows typical normalized Fresnel curves. The important things to understand are these. Out to 
significant angles (80 degrees in this example), there is very little polarization effect between the 
two reflected states. All the interesting action occurs at the larger angles. The relative depth of 
the Brewster dip (i.e., the degree of polarization) and the ratio of the normal incidence to the 
grazing incidence reflectance are the most important features. Metals should generally have 
minimal reflectance ratios, while dielectrics should be much greater. We saw in Figures 3.8 and 
3.9 that for typical values of the indices of refi-action, these features really change very little. This 
is to our benefit, since extracting accurate values for the indices is difficult. So errors in our 
estimates will minimal effect on the final BRDF. 
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3.4    Shadow-Masking Artifacts 

When, for rough surfaces, either the incident Ught LOS or the viewer LOS gets nearer to the 
grazing angles (i.e., closer to the material surface), the tilt distribution function S(0ff) may no 
longer fairly represent the true tilt distribution. Figure 3.11 demonstrates the effects of shadowing 
and masking for a greatly magnified surface. 

On the left of Figure 3.11 the incident hght casts a shadow on both of the facets that form the 
groove. This is effectively an area no longer exposed to the incident beam. For more normal 
incidence conditions these same facets would be illuminated. Thus, the E(0j^) distribution has 

V V 
Shadowed regions Masked regions 

Figure 3.10. Shadow/Masking Examples for Highly Magnified Micro-facets 

changed. The opposite can be true, as shown on the right of Figure 3.11. Here some of the 
reflected hght is masked by the adjacent facet and redirected somewhere else. Again, the S(^jy) 
distribution has changed. The shadow/masking effect is two fold. First, the effective area for 
reflection is reduced as facets get shadowed or masked fi-om the beam; this reduces the intensity 
of the scattered BRDF. Second, more diffuse scatter might occur. 

The exact nature of the shadow/masking effects depend on the roughness statistics. ERIM added 
an empirical correction factor to the first-surface BRDF to try to account for the shadow/masking 
effects in the form (the more comphcated form stated for completeness here): 
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* 

l+^A/.^-(2/?/r) 

Q   -          il                                 *                                                                    /T ITS 

where Q. and rare measured constants, that are functions of the surface roughness, 0N is the usual 
angle the bi-section vector makes with the surface normal, /? is the angle between the incident 
light and the bi-section vector, 0/ is the light incident angle, and ^ is a derived geometrical angle. 
Estimating the angle ^ starts by defining the direction of the specular ray S^ ^: 

S,^,,=S,-2iS,oN)N                                          (3.34) 

Then by defining a new perpendicular direction P: 

P = Kec^H                                                      (3.35) 

where H is the bi-section vector. Form the final vector of the triad, Q: 

Q = P^ipec                                                                            (3.36) 

Now, take the dot product of the observer LOS ray, V^, with this last vector: 

This seems too complicated for the minimal value returned by the calculations. We will omit the 
second ratio in Equation 3.33 and use just the following for the shadow/masking factor: 

l + ^^.e-2/?A 
C    _            O                                                                                                                                                            /"«  -in\ So-     ^^0^                                                                   (3.38) 

n 
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Figure 3.11. So Curve for Q=1.56 Degrees and x = 35 Degrees 
g 

When Q is large (i.e., Q » 9N), the two —^ terms vanish and So goes to unity, and hence no 

Q 
attenuation to the BRDF. If 6,^ is zero, then again the -^ terms vanish and So goes to unity. If 

P= 0 (i.e., monostatic illumination), or ris large compared to fi, then the numerator and 
denominator in Equation 3.38 are equal, and again So goes to xmity. Only when the two (Q, T) 

parameters are relatively small, the illumination is bistatic, and the observer is not along the 
specular direction, will So not be equal to unity, and the BRDF is then attenuated. Figure 3.12 
plots the in-plane So curve for a bistatic BRDF at 45 degrees (Q= 1.56 degrees and r= 35 
degrees). 

Notice that the fimction peaks to 1 at both the forward specular direction (i.e., +45 degrees) and 
at the retro-reflection direction (i.e., the monostatic direction at -45 degrees). Clearly the 
shadow/masking function tends to depress the BRDF values at the skirts only. When the bistatic 
angles are small (i.e., near normal incidence), this double peak does couple into the otherwise 
monotonic BRDF. 

Equation 3.32 is now modified to include the shadow/masking effects: 

n'   (f) f)   Rn \    ^^^^^   bi_factori0;^) .   -u (3.39) 
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This is the complete polarized first-surface BRDF. The choice of the Fresnel reflectance depends 
on the incident and sensed polarization state. 

3.5   The Unpolarized Diffuse BRDF 

Light that is difaisely scattered at either the first-surface or fi-om within the volumetric region of 
the material must be modeled as a second and separate depolarized BRDF. Many materials 
exhibit a diffiise scatter that follows the classical Lambert's law, where the apparent reflected 
radiance is equal in all directions, and the scatter follows a cosine law. The BRDF is therefore 
not a fimction of angle in this case: 

^L..J^) = ^musei^)~ = R.W (sr-') (3.40) 

where Rdijfuse is some effective diffuse reflectivity for the material. The inverse ;r comes fi-om the 
normalization given in Equation 2.3: 

itii 

^diffuseW = 2^- lRA^)cos(0)sm(0)d0 = 7cR^(A) (3.41) 
0 

A Lambertian diffuse scatter can come from either the first-surface (i.e., a very rough finish), or 
the volumetric pigment particles in paint. While Rdiffuse is probably physically intuitive, we will 
refer to the Lambertian diffuse reflectivity as R^, since this is a parameter found in the material 
properties database files. 

Sometimes the diffuse scatter displays a slight non-Lambertian variation with the angle of 
incidence or observation. This arises from different rays penetrating more or less into the 
pigmented volumetric region of a paint (or plastic). 

Consider light penetrating a semi-transmissive material layer where light energy is scattered out 
of the incoming ray linearly with distance. As the ray travels deeper and deeper, its intensity falls 
off as an exponential function. Figure 3.13 shows the basic scatter geometry for a material that 
partially transmits and scatters light. The derivation of the diffuse BRDF follows standard single 
scattering concepts. Assume that a slab of material of thickness dz scatters light with a phase 
function cr(y9), with units of inverse length. The angle yff is taken relative to the incident shot-line 
of the laser light, and the phase function is assumed azimuthally symmetric. If the phase fiinction 
is spherically symmetric (i.e., scatters uniformly into ATI), then the phase fiinction would be: 

^(^) = ^ (l/m-sr) (3.42) 

where Ob would be the fraction of incident light scattered (power removed fi-om the incident 
beam) per unit length into all directions, i.e., the total scattering cross-section. If the irradiance at 
the fi-ont surface is Ig, then, after traveling a distance of w, the residual intensity is: 
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m=io'e- (^touxl-"^ (watts/m) (3.43) 

This holds whether the light is traveling into or out of the material volume. The loss of light is 

Laser Source 
# 

Figure 3.12. Volumetric Reflection Geometry 

from both scattering and absorption, thus, CTt is the total cross-section 

^total ~ ^scattering "■" ^absorption /-i /^Y,\ (3.44) 

We can work backwards from the sensor point of view. The sensor sees light being scattered 
from many differential slabs of dz vertical thickness, each buried at a different depth z. Assume 
the radiance of the slab shown in Figure 3.13 is J(z): 

dPr = J{z) ■ A ■ cos((9^) Xlr-e (^totaf^l^^^^r) 

The irradiance at the same slab is: 

/(z) = /o-e-^"'""-^^'=°'(^'^ 

(3.45) 

(3.46) 

The power scattered out of the beam, going across the slab at depth z into the direction of the 
receiver is: 
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dPn(/}) = I(z)Acos(0i)a(j3) ^SCi, (3.47) 

The apparent radiance of the slab in the absence of the intervening material would be: 

-^^'^^ A rJT^ An   =nz)-^(fi)--^ (3.48) A ■ COS{0r)-oilr COSiOr) ^ ' 

Now, putting equations 3.45, 3.46, and 3.48 together to get the power at the receiver aperture: 

dP, = /„•e-^""'"-^''^°^(^').(7(;9)--^—^.cos(^,).«^,.e-'^'-'-^/«=«s(^.) .^ .Q. 
cos(^^) l-'-'*^; 

The total power at the receiver aperture then is the integral over the depth z: 

cos(g,) + cos(gJ 

P -I  -rrfm  A  ^°^(^^)  /in T^ '^'°""'^' cos(^,)cos(^,)     . P,-I,.a{P).A.--^.Xl,\e ^ri.dz        (3.50) 

Evaluating the integral, we get: 

P -T    '^(^)   A An      cos(g,)cos(g^) 
(^total cos(^,) + cos(^^) y^-^^) 

Casting this into Equation 2.1 for the BRDF: 

pX0iA,fi)=    ra{^^\„, (sr'') (3.52) 

where/^ is some function of the phase angle fi. This is only an approximate treatment, since 
multiple scattering has not been accounted for at all. We also assume that the pigment is opaque 
enough to attenuate the beam within a very short distance of the surface, such that the integral to 
infinity is justified for even thin paint layers. 

For practical usage we really do not want to model much more than a possible spherically 
uniform phase function. The common notation for the angulariy-dependent diffuse BRDF is: 

/-;o„-..>.,.„(^/.^.)=2^^^^J*;;^^^^^ (sf') (3.53) 

where a single constant RHOV (sometimes notated R^) is used to scale the strength of this diffuse 
functional term. As we will see when extracting the diffuse BRDF parameters, the coefficient 
Rhov is fit to the measured BRDF data. Even for metals, where there is no volumetric region to 
justify the above development of this functional form, we will use this non-Lambertian diffuse 
function. 

The total diffuse depolarized BRDF scatter is given by: 
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p' {0i,er<MN)diffuse = Rx + '^ (sfi) (3.54) 

A factor of 1/2 will be needed to account for only half the power going into one linear 
polarization state, if the receiver has such a polarizer. There are other effects that have been 
absorbed into these terms. For instance, the fact that a typical air-dielectric Fresnel interface 
reflects about 4% has implicitly been absorbed into the Rx and Rhov coefficients. 

3.6    Summary of Maxwell-Beard BRDF Equations 

At this point we need to summarize the BRDF equations in their final form. We took time to 
develop the underlying physics and mathematics of the equations to help the user better 
understand how the functional forms arise. The net BRDF will always be a simple sum of the 
polarized specular and depolarized diffuse BRDF terms. The reflected intensities depend on the 
incident polarization state and the receiver polarization sensitivity. The six obvious cases are: 

Incident P:Receiver P 

R(0)     cos(,0i)cos(0r)    "   " 2 cos(^,) + cos(5r) 
(sf')    (3.55) 

Incident P:Receiver S 

^=2 
R,+2- 

cos{0i) + co%{0r) 
(sf')    (3.56) 

Incident P:Receiver none 

,^RppiP)..bi_factoK0^) 

R{<S)     cos(0i)cos(0r) 
Rr+2- Rho 

COS(0j) + COS(^r) 

(sr->)    (3.57) 

Incident S:Receiver S 

'^       R(Q)    cos{0i)cos{0r)    °^ " ^'   2 
Rho 

cos(^,) + cos(0r) 

Incident S:Receiver P 

(sf^)    (3.58) 

,   1 

^=1 «,+2- Rhov 
cos(^,-) + cos(^^) 

(sf')    (3.59) 

Incident S:Receiver none 

p.^RsMbi_factoK0^) 

R(P)    cos(0i)cos{0r) 
R, + 2- Rho 

cos(0/)+cos(^^) 

and when the incident polarization is either unpolarized or circular, and receiver none: 

(sf^)    (3.60) 
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Run(fi)  bi_factor{0fi) 

R(0)    cos{0i) cosier) 
So(ON'fl) + R, + 2 l^ho 

cos(5,) + cos(ffr) 
(sr')    (3.61) 

where the unpolarized mean Fresnel reflectance (Equation 3.12) is used in the specular BRDF. 

This is clearly not a full treatment of the polarization problem, h the LRST application, the 
receiver will most likely have no polarization selectivity. Whether the receiver is a biological eye 
or an electro-optical imaging sensor, both polarization components will be received. The incident 
polarization state will more than likely be elliptically polarized. For reflection geometries where 
the included angle between source and observer is less than 45 degrees, the polarization effects 
are minimal. For the more grazing geometries, the S reflectance will be higher than the P, and the 
partition of energy into each of these directions might be more important to consider. At the 
extreme grazing geometries, both reflectances go up dramatically, and again the polarization 
preference is less critical. 

The issue then is whether to worry about polarization effects for those reflection angles for which 
the degree of polarization is greatest. If the laser polarization is either depolarized or circularly 
polarized, then using the mean unpolarized Fresnel reflectance is accurate. If the laser 
polarization is elliptical, then using the mean unpolarized Fresnel reflectance is probably still 
adequate. If the laser polarization is strictly linear, then there could potentially be a significant 
reflectance difference for some materials; the error occurs for mid-angles (e.g., 45-85 degrees), 
and is the difference between the unpolarized mean Fresnel curve and the S and P curves (cf 
Figure 3.6). For a linear polarized axis at 45 degrees to the surface normal, the equations are 
implemented in the code will predict values that are low for the S reflection, and high for the P 
reflection. The materials that have significant first-surface specular reflections are metals. The 
interesting thing is that most reflective metals have Fresnel curves that do not separate very much 
because the 5 and P reflectances are already fairly high. The approximation in using the 
unpolarized mean Fresnel reflectance for all cases should be a good compromise. 

There are three approaches to capturing the polarization effects. First, we could model the 
polarization effects in detail. This would involve accurately modeling the incident polarization 
state of the laser (which would be determined by ABL performance tests, for example). Either a 
Stokes vector or a coherency matrix would represent this state. Next, at each reflection location 
on the target surface, we would need to rotate the frame of the incident polarization state vector 
into the local fi-ame of the 5 and P directions. This then gives us the partition of power in the two 
orthogonal polarization states (S and P) such that we can separately weight the respective 
polarized BRDF from Equations 3.57 and 3.60. The downside to this approach is the rather 
expensive computational cost of always solving for the S and weighting. 

The second approach involves no additional computation, and is really the most conservative. 
We can always use just the S reflectance curve (i.e., use Equation 3.60) and accept the error for 
always overestimating the P reflectance. 

The third approach also involves virtually no additional computational cost and should give 
higher-fidelity results. Use the unpolarized or mean Fresnel reflectance value instead of the S 

BRDF Reference Manual 

-30- 



reflectance. On average this should balance the errors in overestimating the P and under- 
estimating the S reflectances. This is the approach currently used in LRST. 
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4.0    SIMPLE TWO-PARAMETER BRDF MODELS 

In addition to the ERIM BRDF model, we currently use two other simplified models that are 
procedural and require only two parameters to completely specify the bistatic BRDF functional 
form. Having a suitable zero-order BRDF model is important for several reasons. We are often 
faced with having no measured BRDF data for some materials; this is especially true for foreign 
technology items. Sometimes we want to do parametric studies to assess the effect of a BRDF on 
a particular signature. It is useful to have a BRDF functional form that lends itself to analytic 
manipulation. 

The first model is a modified Phong BRDF model (Reference 3) commonly found in the 
computer graphics literature. Phong basically models the specular effects by a simple cosine 
raised to some power, which is computationally cheap because the cosine is readily available 
fi-om routine dot products. The modification we made was to bend this model to look very much 
like the Maxwell-Beard model, in which the cosine factor substitutes for the bifactor. We ensure 
that the BRDF complies with the standard hemispherical reflectivity normalization requirement. 

4.1    The Phong BRDF Model 

The Phong model is a simple two-parameter empirical model that attempts to describe the BRDF 
as having a diffuse (i.e., an asymptotic Lambertian) component, and a shiny component around 
the specular reflection direction. 

The specular contribution to the BRDF is responsible for giving smooth surfaces their shiny look. 
The primary difference between BRDF models usually centers on the detailed functional form for 
the specular component. The Phong model attempts to model the specular falloff by a cosine 
raised to some power. The larger the exponent, the more specular the BRDF appears. 

The Phong formulation starts by constructing a bisection vector H between the incident light 
direction and the observer direction (cf Equation 3.25); then the angle between H and the 
surface normal is 0s, the angle used as the argument of the cosine. The Phong BRDF assumes 
that the bifactor (i.e., the tilt distribution function) is this cosine power function: 

p-^{0tA,MN)specular -^^^^^^^■ A/■ COs"(g^)■ ' ■$„ (sr') (4.1) 

where M is a normalization constant (it conserves the total specular reflectivity), and 
M-cos"(0^) is the effective tilt distribution function. The leading function is the normalized 

Fresnel reflectivity. The trailing function So is the shadow/masking term that is everywhere 
defaulted to 1. We do not implement So because the change in results by including it would be 
well within the current error range of the bifactor. 

For small values of «, the specular nature of the BRDF is not very pronounced. Figure 4.1 plots a 
few examples of the specular BRDF function for varying values of n when the light is incident 
vertically. 
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The upturn of the BRDF at large angles is typical of BRDF models, and results from the cos(^r) 
in the denominator. This is especially true when the bi_factor predominantly scatters into large 
angles (i.e., small values of n). The physical quantity of interest, however, is "intensity," not the 
BRDF. The BRDF turn-up is always balanced by a cosine in the numerator that prevents 
unbounded    intensities    at     , 
grazing angles. Phong BRDF Cun^s 

As an approximation, the 
specular value drops to half 
the peak when the angle is 

"HWHM ~ 2 • cos 

-0.30103 

10 

(rad) 
(4.2) 

For example, let us take n = 
100. The half intensity - 
half angular width would be 
13.47 degrees, which agrees 
with Figure 4.1. 

10 20 30   40   50   60 
View Angle (deg) 

70 00 90 

Figure 4.1. Phong Specular BRDF for: n=l 000,100,10, and 1, 
Assuming Unity Reflectivity 

The    Phong    model    also 
supports a diffuse BRDF component, which is always Lambertian: 

^Lambertian       ^ (Sf^) (4.3) 

The diffuse BRDF parameter Rx is not directly supplied by the materials database - rather, only 
the relative fraction of first-surface diffuse scatter is specified. The volumetric diffuse (if the 
material is a paint) is inferred later in Section 6 during the normalization. 

4.2    The Gaussian BRDF model 

The Gaussian BRDF is probably the most suitable, best-behaved functional form we have for 
comparing numerical predictions with analytic formulas. It normaUzes very well at all angles of 
incidence (as long as the surface is relatively shiny). However, notwithstanding its convenient 
analytical properties, we should expect only qualitative agreement of this model with nature. 

The Gaussian formulation also starts by constructing a bisection vector H between the incident 

light direction and the observer direction. The angle between H and the surface normal is ^, the 
angle used in the exponential argument. The specular BRDF is now given by: 
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P'xX (^1 '^r^P'On,) specular = 
Rxx('i^K,P) Me-'^-^"^'"^ 

where A/ is a normalization constant, and M-e-'-'"""' 

cos(tf,)cos(5r) 
.S„ (sr-') (4.4) 

is the effective tilt distribution function. 

The leading function is the normalized Fresnel reflectivity. The trailing function 5^ is the 
shadow/masking term that is defaulted to 1 everywhere. The argument to the exponential 
contains cr, which controls the angular width of the specular lobe, and is specified in units of 
radians. 

Figure 4.2 shows examples of the Gaussian BRDF shape. The BRDF falls to e'^ =13.5% of the 
peak when 2o-= 20^=0^. 2. For example, the second curve with a= 10° reaches the e~^ point at 
exactly 20 degrees. 

The Gaussian model must support a diffuse BRDF component, which is again always 
Lambertian: 

"Lambertian       x (sr-') (4.5) 

The diffuse BRDF parameter R;, is not directly supplied by the materials database; rather, only 
the relative fraction of first-surface diffuse scatter is specified. The volumetric diffuse parameter 
(if the material is a paint) is inferred later during the normalization. 
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Figure 4.2. Gaussian BRDF Curves for S-, 10-, 20-, and 40- 
degreea Parameters 
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5.0    Maxwell-Beard BRDF Parameter Extraction Algorithms 

In this section we cover the necessary algorithms to extract the Maxwell-Beard BRDF parameter 
set from measured Optical Component Evaluation Laboratory (OCEL) BRDF data. To 
characterize the BRDF of a material, there is one ftmdamental set and two optional sets of 
measurements one needs to make in the laboratory. From these one constructs parametric fits of 
the measured data to extract the optical material properties used in the BRDF simulation models. 

The first (mandatory) set of critical measurements involves making four classic in-plane BRDF 
mono-static (MSA) scans. A linearly polarized laser illuminates the material surface, with its 
optical axis along either the S or the P direction. A receiving sensor, with a linear polarizer 
aligned with either the S or the P direction, detects the scattered radiation. For this measurement, 
one tries to collocate the laser and sensor along the same optical LOS and scaff them in the plane 
of incidence over a fiiU 180 degrees (grazing incidence to normal, and then back to grazing 
incidence). The four usefiil mono-static measurement combinations of source/receiver 
polarization are BRDFss, BRDFSP, BRDFPP, and BRDFps, as a fimction of incidence angle (angles 
are always measured down from the surface normal). Actually, the second two scans are shghtly 
redundant with the first two. In principle one could do the extraction with two crossed scans, but 
it is better to make all four and average the scans to reduce the effects of measurement noise and 
material anisotropy. One cannot collocate the laser source and sensor exactly along the same 
LOS because of their physical size without resorting to additional expensive optical hardware to 
beam spUt and mitigate sb-ay light. In practice, therefore, there is always a small bistatic angle 
between the two optical lines of sight. We call these scans zero-bistatic or quasi-monostatic. 
Figure 5.1 demonsfrates the geometrical layout used for the measurements. This set of 
measurements will be used to exfa-act the surface roughness tilt distribution, the diffuse reflection 
parameters, and the initial estimates of the complex indices of refraction. 

Flat material 
Figure 5.1. In-plane, Zero-bistatic Scan Geometry 
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The second BRDF measurement is a scissor-type bistatic intensity (RVI) scan in the plane of 
incidence. The laser is scanned backward with an angle -0, while the receiver is scanned forward 
at an angle +9 pointing along the specular direction. In principle, the sensor measures the peak 
specular intensity as a function of the angle 0. The intent here is to map out the effective Fresnel 
reflectance. In particular we are interested in the Brewster angle and depth of modulation for the 
P reflectance relative to the normal incidence value. We therefore measure BRDFpp(0). By doing 
a least-squares fit we can extract a complex index pair (n, K) that approximately models these 
features. 

The third measurement takes in-plane bistatic scans (BSA) at various incidence angles. These are 
used to infer the shadow/masking parameters by doing a least-squares fit to the BRDF at angles 
away fi-om the specular direction. These scans are also important for comparing the simulated 
BRDF against measured bistatic data. 

The fourth critical measurement directly captures the full hemispherical reflectivity, taken as a 
function of wavelength if possible. This measurement is independent of all the BRDF 
measurements. The extracted the BRDF parameters, taken in-plane, could be integrated over a 
hemisphere to get the directional hemispherical reflectivity (DHR), but only indirectly. The issue 
with using this technique to measure the DHR is that most of the out-of-plane scattered energy is 
never direcfly measured. A direct measure of the hemispherical reflectivity using an integrating 
sphere represents a much more accurate accounting for the total scattered energy. Usually, both 
methods agree fairly closely, but the direct measurement should be done. For optimum fidelity, a 
hemispherical reflectivity scan should also be made as a function of wavelength. This color curve 
is absolutely necessary for signature simulations to extend the BRDF to other wavelengths or 
wavelength bands. The tilt distribution, or surface roughness, is a geometrical property of 
surfaces and generally does not change much with wavelength. The BRDF scattering angular 
distribution tends to be wavelength-independent (out to longer IR wavelengths). The net energy 
reflected, however, is very wavelength-dependent, and this last measurement establishes the 
fundamental radiometric energy balance. If one knows the net hemispherical reflectivity as a 
function of all wavelengths, then one can in principle borrow and renormalize BRDF data 
measured at a nearby wavelength. In Section 6 we will cover this renormalization process. 

In general, we want to populate the MATTER.DAT database with the reflectivity as a function of 
wavelength (i.e., colors) fi-om the UV to the LWIR. For most of the materials in the current 
database this has been done. We depend on these color curves exclusively to set the radiometric 
energy balance for whatever wavelength is being simulated. Thus, if we are simulating multiple 
laser wavelengths, then we need the measured DHR for each. 

Consider the zero-bistatic scan data. From the first-surface we get polarized retro-reflected 
energy fi-om all the micro-facets that are tilted back at the laser's incident angle. The reflected 
energy is driven by the normal incidence Fresnel reflectance, and the fractional reflecting micro- 
facet area, given by the tilt distribution fiinction. There is the potential for a second depolarized 
reflection via multiple micro-facet bounces if the surface is very rough, as shown in Figure 5.2. 
The depolarization occurs because the multiple-bounce path is different for each microscopic 
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light ray. The scatter also tends to go into wide angles. Usually the amount of diffuse depolarized 
scatter from the first-surface is minimal, perhaps just a few percent of the total. 

Sensor 

Laser 
Specular polarized 
backscatter (red) 

Diffuse depolarized 
backscatter (green) 

Multiple first 
surface reflections 

Figure 5.2. Polarized and Depolarized Reflections for the First-surface 
Reflection for a Very Rough Surface 

For dielectric materials, the reflection process includes a volumetric contribution from the 
pigment particles, if the wavelength is such that the dielectric binder will transmit light into the 
volumetric region (this is why paints work). Figure 5.3 shows the added scatter from the 
volumetric region. This contribution is usually the major reflection contributor because the first- 
surface Fresnel reflection is typically only 4% to 10%. 
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Sensor 

Laser 

Multiple bulk 
reflections 

Specular polarized 
backscatter (red) 

Diffuse depolarized 
backscatter (green) 

Multiple first 
urface reflections 

Figure 5.3. Polarized and Depolarized Reflections for a Dielectric Material 

There are five quantities given in Table 5.1 that must be inferred from measured data to support 
the Maxwell-Beard BRDF model. 
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Table 5.1. Parameters Requiring Extraction for the Maxwell-Beard BRDF Model 
Parameter Extraction Method Comments 

bi_factor(6{v) Zero-bistatic scan BRDF less the 

depolarized diffuse con^onent. 

/?(0) is measured indirectly and is part 

ofthebifactor. 

Rx Least-squares fit to depolarized 

BRDF. 

Lambertian uniform fit - must avoid 

polarized leakage in cross-scan data. 

Rhov Least-squares fit to depolarized 

BRDF. 

Non-Lambertian angular dependent 

fit. 

N Method 1: Integrate the mono-static 
BRDF data via Equation 3.31, assign 

one index and solve for the other. 

Method 2: Use bistatic scissor-scan 

set and least-squares fit to intensity 

values, n and K are fit 

simultaneously. 

The first method relies on Equation 

3.29 being valid. The second method 

requires more measured data and 

becomes difficult for rough surfaces 

or surfaces with significant diffuse 

components of the BRDF. 

K Same as for .n Same as for n. 

X Least-squares    fit    made    against 

bistatic scans at varying incidence 

angles.   Both   r  and   fl   are   fit 

simultaneously. 

Fit only applies to measured BRDF 

fits at off-specular angles. 

a Same as for r. Same as for r. 

DHR Not extracted. Directly measured using integrating 

hemisphere. 

5.1    Extracting the Bi_factor (Scaled Tilt Distribution) Function 

Let us return to Equation 3.55 for the total BRDF scatter when the sotorce and receiver are 
approximately collocated and we are measuring P to P: 

Pppy"N/mono-static '' 
R{vtys.{0ff) 1 

-+— 3ho 
cos(%) 

(Sf') (5.1) 
4-cos(%)-cos(0;v)    2 

Because the scatter is in the retro-reflection direction, the leading normahzed Fresnel, as well as 
the trailing shadow/masking values, are both unity. The measured cross-polarized BRDF is: 
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P«(^;v)mo«<,-,mftc=|«x+-^£^ (Sf') (5.2) 

Notice that there are no polarization-dependent terms in either equation above. Therefore, the 
equations would have been the same for the 5 to S, and 5 to P polarizations. 

Before proceeding, we want to average the data sets to reduce measurement noise in the 
following way. We average the values at the negative angle with those for the positive angle: 

Next, we can begin to solve for the bifactor by taking the difference of Equations 5.1 and 5.2 to 
get the specular polarized component alone (recall that the depolarized diffuse contributions for 
P to P and P to 5 are equal): 

^P'specu,ar(6N) = Ppp(0N)-Ppsm=        "^^f^^l   , (Sr"')       (5.4) 

We again want to average the two sets of scans, and make sure no differences go negative: 

^P'speculaA^N) = ~\[rri^mp'pp-p'ps] + rmx[0,p'ss-p'sp]] (sr'')      (5.5) 

If ^las, is the last valid measurement angle (less than 90 degrees), then beyond this angle the 
BRDF is continued by rolling off the last valid measured BRDF as a cosine squared (or some 
higher power): 

Solving Equation 5.4 for the bi_factor(6}v): 

n2 
cos(») 

cos((9to,) (sr')    (5.6) 

2,„  ,    R(O)-^{0N) /„^-h 
biJactoKg^v) = ^P'specu,ar(^N)<=°'^(^N)= "^"^'^^'^^^ (sf')       (5.7) 

The bi_factor is a tabulated function that is the product of the normal incidence Fresnel 
reflectivity and the tilt distribution function. 

Figure 5.4 shows examples of measured zero bistatic BRDF data for a fairly shiny metal. The 
diffuse cross-scans both show about a 6% contamination of the depolarized scatter in the center. 
This is caused by the strong specular cross-polarized peak leaking through the sensor's linear 
polarizer. When we attempt to extract the diffuse parameters we will need to ignore this 
erroneous data. The raw data quits around 80 degrees. 
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Figure 5.4. Sample Measured Zero Bistatic BKDFData; at left are the specular PP and SS 
scans; at right are the diffuse PS and SP scans. 

Using Equations 5.3, 5.5, and 5.7, we plot the specular mono-static BRDF curve with the 
measured data in Figure 5.5. The agreement is quite good, though neither the indices of refraction 
nor the shadow/masking parameters were properly extracted at this point. Most of the critical 
BRDF properties have been extracted by this point. 
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Figure 5.5. Simulated (Red) and Measured (Blue) Specular Monostatic BRDF Curves 

There is one pathological bifactor extraction problem we need to deal with. When the first- 
surface is extremely shiny, the specular lobe width can become less than the angular width of the 
BRDF sensor aperture (e.g., less than about a degree for OCEL data). 

For example, when there is a single large measured zero bistatic BRDF point at zero degrees and 
all other points are near zero, we must do a little reconstructive surgery. The issue is that the 
receiving aperture is no longer a point sample, but integrates the scattered intensity profile, 
capturing perhaps all the energy. The measurement is no longer a BRDF. The problem is that we 
have no knowledge of the actual BRDF profile-none whatsoever. There are an infinite number of 
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possible profiles for angles less than the second measured point that could give the same 
measurement. Some will have higher peak values than others. The approach we took was to 
construct a Gaussian-shaped BRDF profile that matches the measured peak (low as it might be) 
and the next measured BRDF value. The width of the Gaussian was chosen to generate the peak 
BRDF at zero degrees. From zero to the next measured bifactor, the new bifactor profile 
follows: 

e-2-^^"^'      . ,   -K bi_factor(0/y) = —+bi_factor(5„^„) (sr )     (5.8) 
1-n-a 

where cris given by: 

^■ P'peak^^N-^-) 

(sr')    (5.9) 

The primary reason to interpolate to a new bifactor profile is to ensure a reasonable 
normalization. In fact, one of the consequences of the poor measurement resolution is a 
normalization that is well above unity. 

At the other extreme, when the surface finish is very rough, the bifactor is probably very small 
and therefore inconsequential. 

If the surface is reasonably smooth, then we can solve reliably for the normal incidence Fresnel 
reflectivity R(0) by integrating the specular zero bistatic BRDF (of Equation 3.31): 

nil 
R(0) = 2;r ■   J  4 • Ap;^^^^,^^ (6fj) • cos-'(0) • sin(0) • d0 (5.10) 

0 

For metals, R(0) should be reasonably close to the actual hemispherical reflectivity, even for 
somewhat rough surfaces. For clear dielectrics, R(0) should be somewhere between about 4% 
and 10% or the nominal Fresnel reflectance for the dielectric. We never need to know R(0) 
explicitly to successfiilly use the Maxwell-Beard BRDF model-all we need is the bifactor. So 
Equation 5.8 does not need to be valid. It is more of intellectual interest right now. 

Earlier, we made the claim that for somewhat shiny metals the hemispherical reflectivity, 
DHR(O), is closely related to the normal incidence Fresnel reflectivity R(0), and therefore to the 
complex indices of refi-action. Physically this is so because for even polarized incident light, the 
Fresnel curves remain reasonably flat to angles greater than 45 degrees, which means that when 
light reflects off the micro-facets it loses about the same amount of energy regardless of 
reflection direction. Thus, each little light ray effectively sees the same loss as it goes somewhere 
back into the incident hemisphere. To show this, let us start with Equation 2.3 for the 
hemispherical reflectivity. 

DHR(., =0) = T r^- "-'T'y.'o -cosW.sinW......       (5.11) 
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where we have dismissed the diffuse term because it is not part of the specular hemispherical 
reflectivity, and is usually small for first-surface effects anyway. We will assume that the laser is 
incident along the normal such that 0i is zero. We will also assume unpolarized incident light. 
This geometry immediately means /?= 6{„ and ^= 012 for the integration. Next we substitute the 
bifactor equivalent terms using Equation 5.7 above, drop the So shadow masking term because it 
is usually very near 1 for moderately shiny surfaces, and cancel the cosine terms: 

DHR(^,=0)=  J    J^^Ml.BOL^.sinC^).,,.,^ (5.12) 
0    0     ^C) ^ 0     0 

Using consistent variables, this gives us: 

DHR(.,=0) = ^'j1'^^.S(./2).sinW....</, (5.13) 
't     0    0      ^t") 

If we do a substitution of variables 0 = 2a, d0 = 2da, and recognize 
sin(2a) = 2sin(«) • cos(a): 

DHR{9i = 0) = «(0) ■ ]d<p I     ""^ ' ■ H(a) • cos(a) • sin(a)  da (5.14) 
0     0    ^W 

Except for the limits of integration and the Fresnel ratio, the double integral will evaluate 
approximately to unity according to Equation 3.29. As another small approximation, we will 
drop the normalized Fresnel ratio since it is nearly 1 for angles less than 45 degrees (see Figures 
3.8 and 3.10), which are the alpha limits of integration. If the surface is shiny enough, then the 
tilt distribution will have a vanishing contribution for angles above 45 degrees anyway. Thus, 
with little error, given a moderately shiny surface, we can extend the limits of integration to 90 
degrees and arrive at the good approximation DHR(0) ~ R(0) for the first-surface scatter. 
Equation 5.14 should reinforce the idea that any micro-facets tilted at angles greater than 45 
degrees (the limits of integration) reflect light rays down into the surface grooves, causing 
multiple reflections and hence wide-angle depolarized diffuse scatter. In the limit of a very shiny 
surface, then clearly the Fresnel law demands DHR(0) = R(0). Thus, the indices do determine the 
DHR. For non-normal incidence the integral of Equation 5.14 is not so symmetrical. However, it 
should be clear that out to fairly large angles the same arguments hold, and that DHR(O) ~ R(0). 
In the limit of very shiny surfaces, the reflectance should follow Fresnel's law. 

5.2    Extracting the Depolarized Diffuse Parameters 

The total unpolarized diffuse scatter for both polarization states is given by Equation 3.54: 

■" cos(y,) + cos(^^) 

There are two constant parameters to extract, Rx and Rhov Each parameter has about the same 
influence on the final BRDF value. The second non-Lambertian term turns up at large angles, as 
an inverse cosine. 
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The measured total diffuse BRDF is twice either BRDFSP, or BRDFps. We want to add, and 
thereby average, the two cross-polarized scans to get the total unpolarized diffuse BRDF: 

P' <<OiA)diffuse = BRDFspiO) + BRDFpsiO) (sr"') 

The measured zero bistatic scan data has 0i= Or. Combining the last two equations: 

(5.16) 

BRDFSP (^) + BRDFp^ (0) « /?, + hov 

cos(^) 
(sr-') (5.17) 

To estimate the two constant parameters R^ and Rhov, we will do a least-squares fit to the 
measured cross-polarized BRDF data. This follows a simple minimization process fi-equently 
seen for regression analysis. For each measured diffuse BRDF point, we calculate the squared 
error between the estimated and the measured values: 

^l[BRDFsp{0) + BRDFpsid)] - R^+^-^i^ 
cos(0) 

(sr-') (5.18) 

where there are A'^ measured BRDF points. Clearly we want to find the minimum squared error ^ 
as a function of the two estimated parameters R^ and Rhov Therefore, take two derivatives of 
Equation 5.18 by the two parameters, and set each equation to zero (minimum squared error): 

dRA BRDFsp{0) + BRDFps(0)] - [R^ + R. hov 

cos(^) 
= 0 (5.19) 

dR, 

d    N 

hov   ' 
BRDFspiO) + BRDFps (<9)] -[R^ + ^hov 

cos(e) 
= 0 (5.20) 

Let us substitute p for the total diffuse reflectance (i.e., p(0) = BRDFgp(0) + BRDFps(0)), take 

the derivatives, and rearrange to get two linear equations in two unknowns: 

t'^'^-^-'-^^)-""' 
1 

rcos(^) rcos(^) " rcos'(^) ""' 

We solve for R^^ in Equation 5.21, substitute it into Equation 5.22, and solve for Rhov- 

1 
^Anu   —  ■ 

/ 
N- K     1 -z E    1 

\2 

^ 1 cos^(^)    1 cos((9) 

^   P(d)        N        1 

1 COS(^)       I  COS(^)     1 

N 

Ip(^) 
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We next solve for Rx in the same manner, or simply do the summations in Equation 5.21 using 
the estimated value for Rhov, and solve for R/. 

N 1 

R = 
Z_j hov Z^ cos(^) 

_ (5.24) 

In the event Rhov that goes negative (which is reasonable mathematically), we need to clamp Rhov 
to zero to avoid imphysical behavior. If this occurs, then Rx calculated according to Equation 5.24 
is just the simple mean of the data points, which is the best estimate in the least-squares sense. 
Again, we are doing parameter fits to measured data. We do not necessarily know exactly where 
the diffuse scatter originates in the material, but that is OK for modeling the diffuse BRDF. 

Equation 5.15 models a Lambertian and a particular kind of non-Lambertian diffuse BRDF 
functional form (see Section 3). Therefore, unlike the specular BRDF model, if we difference a 
measured and modeled diffuse BRDF we are very likely to see a residual difference. This is a 
consequence of unmodeled physics in our Equation 5.15. For example, consider the diffuse 
measured BRDF cirrve in ri^t-hand Figure 5.4. The shape of that BRDF curve does not follow 
either the Lambertian (i.e., flat), or non-Lambertian (inverse cosine) functional forms. This same 
figure also points out an important extraction consideration - if the specular BRDF is large, then 
even a small leakage through the linear polarizer will contaminate the cross-polarized scans. This 
contamination is clearly seen in this figure. When doing the least-squares fit in Equations 5.21 to 
5.24, we must be careful to exclude this data because it will distort the answer toward higher 
values. 

Consider the two extracted parameter pairs shown in Figure 5.6. 

MonostaBcBRDFCKw) Siniuiated PS Diffuse Data 
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Figure 5.6. Measured Diffuse BRDF (Blue) with Two Parameter Extraction 
Curves Over Plotted (Red) 
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The upper flat red line was least-squares fitted to all the measured data (i.e., from 0 to 85 
degrees). Clearly this line (and R^) is too high. The lower red curve was fitted to only those data 
points between 20 and 70 degrees. The fit for the second is much better. The measured data falls 
off past 70 degrees, probably because the laser spot is beginning to fall off the sample surface. 

5.3    Extracting the Complex Indices of Refraction from Measured 
Data 

The zero bistatic measurements cannot address the complex indices of refraction (n, /c) directly. 
In this section we will estimate the indices either by using some reasonable approximations, or by 
doing a least-squares fit to scissor-type bistatic intensity scan data. 

The indices are responsible for capturing the complete polarization effects. Exact values for the 
indices are critical to doing very detailed and precise polarization rendering. Thus, the best 
objective would be to somehow extract the exact indices. However, we really do not need to 
know them exactly to reasonably approximate BRDF radiometric modeling. According to 
Equation 5.7, the bifactor already contains the vital normal incidence Fresnel reflectance R(0), 
which comes from the zero bistatic scans. And, according to Equations 3.55 through 3.61, we 
really only need indices that give a Fresnel ratio (i.e., the normalized Fresnel curve) that best 
captures the polarized behavior at the larger angles. 

There are only two critical polarization features in the normalized Fresnel curve to consider. The 
most important is the rise from unity at normal incidence to a value of l/R(0) at 90 degrees. This 
is the feature whose accuracy is most critical, because it affects the grazing incidence reflectivity 
(in some cases, a lot). Unfortunately, this rise in reflectivity is difficult to measure accurately, and 
measuring the normal incidence Fresnel reflectance direcfly can also be difficult. 

The second feature is the Brewster angle, i.e., the dip in the P to P reflectance. This is probably a 
little easier to measure because it usually occurs at reasonable angles. We know that the normal 
incidence reflectance R(0) is a function of both n and /f. In Equations 3.15 and 3.16, we showed 
how to solve for either index given the other. If we vary the real index between its lower and 
upper values, for a given R(0) for example, we can solve parametrically for the complex index K. 

Then for each index pair (always giving the same R(0)), we can always find the Brewster angle, 
which is unique. 

The easiest approach to estimating the indices is to use our best estimate of the normal incidence 
reflectance R{0) (fi-om Equation 5.10 for example), make a couple of reasonable physical 
approximations, and analytically solve. This should be a reasonable approach that yields results 
far better than our second approach, which does a detailed least-squares fit. If we had no 
additional measured bistatic reflectance data, we could still consult published handbooks for 
typical indices for common materials to get a good ballpark estimate for the indices, and perhaps 
refine this with the extracted R(0) value. 
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Thus, we essentially have two constraints on the Fresnel function and two variables. We should 
strive to adequately determine the R(0), build a table of index pairs that generate this value, and 
then search the table for a Brewster angle that closely matches to one measured. Now, along with 
the Brewster angle comes the relative dip in the P polarization reflectance. It is of secondary 
importance if the modeled Brewster dip is different from the measured value. The probable 
reason for this inconsistency is measurement error. 

If the material is a dielectric (e.g., paint or plastic) for which we are sure the dielectric binder is 
reasonably clear at the desired laser wavelength, then we first set Kto zero (it is usually very 
close to zero for transmissive dielectrics), and solve for n using Equation 3.16 given a reasonable 
value (say, 4% to 10%) for the normal incidence Fresnel reflectivity R(0). Typical values of a real 
index range from about 1.2 to 6 for optical glasses, usually not going above 2.0. There should be 
little error because we already know K fairly well. The modeled Brewster angle should occur at 
about the correct angle. The Brewster dip goes to zero at the Brewster angle. The rise in 
reflectivity at grazing angles should also be reasonably accurate. In the complete absence of any 
data, a good choice for the real index n is 1.5 (which means R(0) is about 4%). 

At longer infrared wavelengths, the dielectric (e.g., plastic binder in paints) can begin to become 
opaque and hide the material volumetric region (pigment). In this case the first-surface reflection 
would dominate, AC would no longer be zero, and one would want to treat the material more like a 
metal with little diffiise contribution. 

On the other hand, if the material is a metal, then we would set the real index n equal to 
something between 1.0 and 2.0, and solve for K, using Equation 3.15 and a reasonable value for 
R(0). The value we assume for R(0) can either be the one generated from the integration in 
Equation 5.10, or come from a separate knowledge of the DHR(O). Remember that the critical 
feature we need to correctly capture is the grazing incidence rise. The reflectance for a metal is 
driven entirely by its Fresnel reflectance, which is usually rather high. Thus, if we know the 
hemispherical reflectance, then we would assign this to R(0) and probably be very close to 
reaUty. Looking back at Figure 3.8, the Brewster angle (and relative droop in the reflectivity 
curve at the Brewster angle) increases only slightly with increasing real index n for the same 
normal incidence reflectivity, when n is above unity. So our assumptions for the indices incur 
minimal error in the BRDF model, hi either case, the error is especially small when we consider 
the fact that we will be using the unpolarized mean of the 5 and P curves, which manifests 
polarized behavior only at large angles. 

If we have measured scissor-type bistatic intensity scan data, then we can attempt to do a least- 
squares fit to the measured data, and treat n and Kas free parameters. The measured data are 
treated as relative intensities taken along the nominal specular direction in the plane of incidence. 
Assume the sensor aperture is much smaller than the BRDF specular lobe, and measurement 
geometry is bistatic as shown in Figure 3.1 with 0i= Or. The measured power at the sensor would 
be: 

P,,, = /„-cos(^,)-/7' -cosC^,)-^-^,,, (w) (5.25) 

BRDF Reference Manual 

-47- 



We will define here a point reflectance that is the ratio of the received power to the incident 
power: 

nn 'oCOS(0,)/l 
(5.26) 

where the AX is the polarized state notation. Notice that this quantity is a function of the receiver 
solid angle! We know the BRDF from Equation 3.55, so the point reflectance is: 

/?.+^*<'^ 
cos(^) 

•cos(^)-^. (5.27) 

where we dropped the shadow/masking term because it is unity, made the incident and reflected 
angles the same, and set the argument to the bifactor to zero because we are sensing along the 
specular direction. We used the notation that N^y is the normalized Fresnel ratio. Notice also that 
the point reflectance is a function of the incident/received polarization state. We can immediately 
solve for the receiver solid angle given a normal incidence point reflectance value /?„(0): 

rec 1 

bi_factor(0) + -[R^+R,J 
(sr') (5.28) 

where we simplified the cosine terms to unity at normal incidence and recognized the Fresnel 
ratio as unity also. Next we solve for the Fresnel ratio knowing STirec'. 

Nxxi0) = 
cos^(g) R^(0)        1 

bi_factor{0)  [cos((9)<5n„,    2 R.+ 
R hov 

cos((9) 
(5.29) 

Factoring slightly: 

N^{e) = 
cos(^) 

bi_factor(0)Sn^ i^xxi^)- — R+-^'"'^ 
cos(6') 

cos(^)<5D, (5.30) 

which can be simplified to: 

N^ (0) = k- {R^ (0) - /?„y„,,}. cos(^) (5.31) 

where R^ is the diffiise contribution at the receiver, and A: is a proportionality constant. Thus, we 
remove the diffuse depolarized reflectance contribution from the measurement, and scale with a 
cosine factor. The constant k is not important, since we will normalize this curve anyway. 

Now we need to consider another possibility before continuing on to the least-squares fit. What if 
the receiver aperture is greater than the reflected spot size? Then the power captured by the 
receiver must be an integral over the area of the aperture. This changes Equation 5.26 to: 
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RiO) = ^^ = ip' {0)-COSi0r)-^rec=Pxxi0) (5-32) 
'in 

where FJQ) is the Fresnel reflectance. This result appUes when the surface is extremely shiny. If 
the reflected power contains a significant diffuse contribution, and the specular spot is much less 
than the aperture diameter, we can alter Equation 5.31 to: 

N^(0) = {R^(0)-R,^^J=\R^i0)-^ /? +-^*'"' 
cos(^) 

cos(^)-^,,,      (5.33) 

where the receiver solid angle will probably need to be estimated from knowledge of the 
measurement apparatus. Note also that in Equations 5.31 and 5.33 we never allow N^ to go less 
than zero. 

Now that we have an approximate representation of the Fresnel effects in NJQ), we can search 
for an index pair that will reproduce this curve. Our approach is to do a least-squares fit of a 
normahzed Fresnel curve to iVxv. One method is to do two linear minimizations separately. One 
can search over k looking for a minimum squared error between the A(„ and the normalized 
Fresnel curve, while always forcing n to give the same Brewster angle. Another method is to use 
a basic simplex optimization algorithm and let it systematically search for the best index pair to 
fit the iV« curve. 

While the normahzed Fresnel curve is a vmique fimction of the two indices, small measurement 
errors can lead to unexpected results in the index pairs. A little thought and care should be used 
in accepting the results. One should limit the angular range in the data that is used in the least- 
squares fit. In the final step, one should reject unreasonable index pairs and probably use the 
approximate method outlined above. 

On the practical side, notice that doing a fit to measured data for angles less than about 45 
degrees is useless, because there are no manifest polarization features here. The normahzed 
Fresnel curves can be nearly flat at unity out to angles beyond this. Virtually any pair of indices 
will produce working normalized Fresnel curves for small angles. The downside of using data for 
angles less than about 45 degrees is that measurement errors tend to drive the resulting index pair 
to unreasonably large values. 

In principle, the angles near grazing incidence give a reflectance ratio always greater than 1 and 
equal to the inverse of the normal incidence reflectance. We should probably strive to properly 
address the normal incidence Fresnel reflectance. If we do an adequate fit to the rise in the data at 
the grazing angles, then we are assured that our choice for the indices will produce the correct 
normal incidence reflectance. Frequently the data are bad at these angles because the laser spot 
starts falling off the material sample, giving erroneous values for the reflectance. So, 
unfortunately, we must reject this data fi-om the fit. 
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Figure 5.7. RVI Least-squares Fit for n, k Indices. Measured Data 
are Red, Fitted Data Green 

Consider the same 
material data used 
above for the 
bifactor and 
diffuse parameter 
extractions. In 
Figure 5.7 we 
show several least- 
squares fits to the 
RVI scan data. 

The top green 
curve comes from 
matching the 
indices to the 
estimated normal 

incidence 
reflectance /?(0) and to the Brewster angle at about 61 degrees. This is probably the most 
reasonable, since the material is aluminum. Among the three least-squares fitted curves, the one 
that uses the data fi-om 50 to 70 degrees is the best. The grazing incidence growth in the 
reflectance is about 70, which is a bit extreme. The depth of the curve at the Brewster angle is 
also unreasonable for a metal. The measured data is very troublesome for angles less than 40 
degrees because it is too low (regardless of the indices). This is probably a good case where one 
would fi-ankly reject the fitting approach and use the solution method outlined above (as was 
done for the top green curve). 

If we decide to use indices that give a normal incidence reflectance /?(0) very much different 
fi-om the true value, they will lead to erroneous hemispherical reflectance values at grazing 
angles. One often finds extracted values for a metal that generate a very low R(0), which in turn 
leads to a very large rise in the reflectance at large angles, which then drives the hemispherical 
reflectance above unity! This is cleariy unphysical and should be avoided. 
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5.4    Extracting the Shadow/Masking Parameters from Measured Data 
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Figure 5.8. Shadow/Masking Effects for Moderately Shiny 
Aluminum 

(Red = Simulated, Blue = Measured) 

The shadow/masking 
parameters have the 
effect of knocking 
down the bistatic 
BRDF for angles away 
from the specular. 
Therefore we use 
bistatic scans and do 
least-squares fits to 
search for the r and Q 
parameters that will 
best match the 
measured bistatic data. 
Figure 5.8 shows an 
example for the 
moderately shiny 
aluminum used above. 

The blue curve is the measured bistatic BRDF. The upper red curve is the simulated BRDF 
without any shadow/masking effect. The lower red curve shows how the shadow/masking 
function So begins to fit the data better at the larger angles. 

Figure 5.9 shows an example for a very shiny aluminum. The incident angle is 30 degrees. The 
blue line is the measured bistatic BRDF. The top red curve is the optimal T= 0.57 and Q = 85.0 
parameter fit for this material. Two other curves for different Q values are shown for 
comparison. The green curves are the generated shadow/masking fimctions So. This material is so 
smooth that there are virtually no manifest shadow/masking effects. 

Estimating the 
shadow/masking 
parameters (r, Cl) 
again involves 
doing a least- 
squares 
optimized fit 
using a simplex 
algorithm. The 
measured bistatic 
BRDF curve is 
simply 
differenced 
against the 
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simulated BRDF to generate a squared error, which is then minimized as a function of (r, Q). 
Since the shadow/masking function So has very Httle effect near the specular direction, those data 
points should be eliminated from the fit. Likewise, points at large angles tend to be driven by 
diffuse effects which should also be ignored. In the example given in Figure 5.9, the fit was done 
between -10 and +60 degrees. 

The measured bistatic BRDF should probably have its cross-polarized diffuse component 
removed before doing the least-squares fit, because the diffuse part is not affected by the So 
function. However, this data is not available so we must include the diffuse part of the simulated 
BRDF. 

Including the shadow/masking effects is really a second-order improvement to the BRDF model, 
at best. Without So the specular polarized BRDF, at worst, could be incorrectly modeled a little 
high at angles far from the specular direction, hence where intensities are down already and of 
secondary importance. When in doubt, one can assign large values to the two parameters (e.g., 
1000), to effectively inhibit their influence on the BRDF. This always produces a BRDF higher 
than that which would have been calculated with smaller parameters, and this would always be 
more conservative. 

More disturbing, for some materials, is a trend in the measured bistatic BRDF data in which the 
peak drops as the incident angle increases. It should generally increase as an inverse cosine 
squared, and slightly fall off with the Fresnel Brewster dip (these are P to P polarized scans). 
Figure 5.10 shows this behavior, both measured and modeled. The red curves are the modeled 
BRDFs, which indeed show an increase in the peak as the angle increases. The blue curves are 
the measured BRDFs. Instead of climbing, they consistently fall in BRDF value (not intensity!). 
It is not clear whether this is just bad measured data, or whether other BRDF physics is at work 
here. For other 
materials, we do see »^^m>F(,i^) 
the correct behavior. 

One might be 
tempted to conclude 
that this behavior is 
due to 
shadow/masking at 
the larger angles, 
thereby dropping the 
BRDF. But this 
seems unlikely 
because the material 
was polished to an 
RMS  roughness  of 

soam SOilOOO OJOOOO 
Obut\ntat Aiwta fdeoft 

Figure 5.10. Measured and Modeled Bistatic BRDF for Increasing 
Angle of Incidence 

800 nm (Xn.25). The micro-facet tilts seems mostly to be less than 15 degrees, so it seems 
difficult to believe there would be much shadowing or masking. Even if there were, the 
functional form of the shadow/masking function So will not attenuate the peak BRDF anyway. 
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5.5    General Comments about Extracting Parameters 

In this section, we have presented a number of analytical and other approaches to extract the 
Maxwell-Beard BRDF parameters. The most significant are the zero bistatic data, from which we 
extract the bifactor and the diffuse parameters. This is mandatory. Extracting the complex 
indices and the shadow/masking parameters takes a lot of work and returns very little in terms of 
increased fidelity. One can do a good job of extracting usefiil parameters from just the zero 
bistatic measured scans and a little reasoning. 

Depending on the apphcation of the data, the required accuracy for the complex indices can vary. 
For LRST we need not extract them to a high degree of accuracy. We can afford some variation 
without compromising the radiometric resuUs too much, because we are using an unpolarized 
and normalized Fresnel fimction. For other appUcations, such as signature rendering, we would 
be more concerned about the accuracy of the refractive indices. 

The process of extracting the data is sequential and iterative in nature. The bifactor is easy and 
automatic, with no user intervention. The diffuse parameters are easy, but require the user to 
possibly exclude some data due to cross-polarized leakage. Exfracting the indices is the most 
difficult extraction task. There are two completely different methods for extracting the refractive 
indices. The user can do them manually, or try to do a least-squares fit of a normalized Fresnel 
curve to measured bistatic intensity data. We really think the best approach to estimating indices 
is to manually match the normal incidence reflectance and the Brewster angle. If the user thinks 
there are shadow/masking artifacts in the measured bistatic BRDF data, then one can do a least- 
squares fit to estimate the parameters. 

The user must always be aware that all BRDF measurements are fraught with noise, errors, 
measurement artifacts, and run-to-run inconsistencies. We have addressed a few of these 
problems above, but others will probably plague all attempts to extract data. This brings us fiiU 
circle to not taking BRDF data too seriously. There are a lot of minor compromises that have to 
be made. BRDFs are complicated and vary widely between materials. Not all material BRDFs 
can be completely modeled by the Maxwell-Beard BRDF model. However, most of the 
important ones we will likely encounter in the context of LRST can be. 
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6.0    Shifting Wavelength and Renormalizing the BRDF 

The Maxwell-Beard BRDF is typically measured at only a few wavelengths because of cost or 
equipment considerations. The radiometric simulation codes, however, need to make radiometric 
predictions for any wavelength within the stated limits of the simulation application, which 
usually ranges from the UV to the LWIR. We will therefore need a methodology for synthesizing 
a reasonable approximation to each material BRDF, as it is called out in the target model, at 
wavelengths where data was not directly measured. This will require making some physical 
assumptions and relying on the fact that the optical properties of most common materials behave 
reasonably well and that color and geometric spread are usually decoupled. 

While we cannot always measure BRDFs at all wavelengths, we can easily measure the 
hemispherical reflectivity for each material at closely separated wavelengths over a very wide 
spectral bandwidth. This color curve is used to tie to reality the BRDF we synthesize at any 
wavelength within this band. Whatever BRDF interpolation scheme we decide on will certainly 
introduce some deviation between model and reality. At a minimum we can at least guarantee 
that the energy balance is preserved. In fact, even at the measurement wavelengths for the 
BRDFs, we will still renormalize the BRDF to this color curve for consistency. 

The synthesis process is done in two steps. First we derive BRDF model parameters through 
interpolations; second, we renormalize the BRDF to the color curve. In some cases, the 
interpolation step is quite similar to the renormalization. When we have BRDF measurements 
that bracket the desired wavelength, we will interpolate the respective BRDF parameters and 
renormalize the BRDF to match the measured total hemispherical reflectivity. If the desired 
wavelength is outside the measured BRDF set, we will use the nearest single BRDF 
measurement and just renormalize the hemispherical reflectivity. We will not extrapolate BRDF 
parameters. 

6.1    Interpolating the BRDF Parameters 

The Maxwell-Beard BRDF model is based on the theoretical assumption that the first-surface 
scatter is driven primarily by a purely geometric micro-facet specular-ray reflection process, and 
the polarization is driven by the normalized Fresnel equations for these facets. This assumption 
works well when the RMS surface roughness is on the order of a wavelength or larger, where 
diffraction effects are less important. For most target object materials the surface roughness is 
usually much greater than l^im RMS, which means the model will work well out into the MWIR 
and perhaps at longer wavelengths. Surfaces smoother than the wavelength are locally 
approaching optical-quality polish, diffraction does become important, and the BRDF specular 
spread does tend to couple with wavelength. Glass would be a common example for which the 
typical surface roughness is much less than the wavelength, even in the visible region. Many 
materials appear quite smooth in the LWIR region because of the longer wavelength, while 
having a broad BRDF in the visible. 

The Maxwell-Beard BRDF model puts its wavelength-dependent reflectance into the bifactor, 
which is the product of the tilt distribution function and the normal incidence reflectance 
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(Equation 5.7). The bifactor measured for short wavelengths (e.g., near-IR or visible 
wavelengths) has basically the same shape but is scaled linearly with changing reflectivity, by 
wavelength. At the longer wavelengths where diffraction and wave effects become important, the 
bifactor no longer represents purely geometrical scatter by tilted micro-facets. Here the 
bi_factor begins to represent both an effective facet distribution and a reflectance. This is why a 
single BRDF measurement at a single wavelength is not sufficient if one expects to model 
radiometric quantities at both the shorter and the longer wavelengths. 

There are at least three approaches to approximating a BRDF at a wavelength between two 
bracketing wavelengths where data are measured. The simplest is just to take the measured data 
as is, at the closest wavelength, and just rescale the hemispherical integral to match the measured 
directional hemispherical reflectivity (DRH) at the new desired wavelength: 

BRDF {X,,,,,,a ) = DHR (^„ = 0, X^.^,^) 
BRDF {^closest) 

\ BRDF  005(0) dQ 
(6.1) 

Note that the quantity in brackets is a unity reflectivity BRDF function. The denominator is the 
DHR for that BRDF, at that wavelength, for normally incident Ught. 

The shortcoming of this approach is that the BRDF character will discontinuously jump as the 
wavelength passes midway between measured data sets. Worse yet, it also suffers by ignoring the 
detailed mechanisms by which the changes in reflectivity arise. For example, if the material is a 
dielectric, then as one changes wavelength, the dominant effect is how the paint pigment changes 
reflectivity. The first-surface scatter does not change color, because the clear binder refractive 
indices do not really change much with wavelength. Such a simple rescaling changes both effects 
equally, which is an approximation we can improve upon. 

The second approach is to linearly interpolate between bracketing BRDFs, and rescale to the new 
DHR. Thus: 

BRDF(>lrf^,y^^ ) - DHR(A^gs,y^rf ) • (1.0    g) BRDFi(^i) I Q BRDF,(;l,) 
jBRDFi ■ cos((9) • rfn jBRDFj • cos((9) • rfQ 

(6.2) 

where the BRDFs at each bracketing wavelength are both linearly weighted and re-normaUzed to 
unity reflectivity. Q is the linear weighting factor going from the shorter wavelength Ai to the 
longer wavelength A,2: 

This approach improves upon the discontinuous behavior. The shape of the BRDF will change 
continuously between wavelengths. It again suffers fi-om not properly adjusting the detailed 
effects at the intermediate wavelengths. This is not a bad approach, and is the one used for non- 
conventional exploitation factors (NEF) modeling (Reference 5). It does require calculating two 
BRDFs, which is a bit inefficient. 

BRDF Reference Manual 

-55- 



A third approach is to interpolate each of the respective BRDF parameters (in some logical way), 
synthesize a single new material, and then renormalize to the respective DHR. Our desire is to 
avoid any discontinuous behavior, and to preserve the underlying detailed physical changes 
occurring as the wavelength changes between the bracketing measured BRDF wavelengths. Each 
parameter will be interpolated to avoid the discontinuous jumps. We will also need to pay 
attention to the material type to differentiate how we renormalize and balance the effects. 

For the Maxwell-Beard BRDF, we start the parameter interpolations for the bifactor look-up 
table. The first assumption is that the tilt distribution function changes smoothly and linearly 
fi-om one wavelength to the next. For the shorter wavelengths, it should change very little. The 
bifactor, however, includes the normal incidence Fresnel reflectance, which is also changing 
with wavelength. So, we first try to estimate R(0) by integrating the bifactor: 

4 ■ J bi_factor{0,^)-cos(^). Jfi = R(0) ■ J S(0/^) • cos(^).rfQ « R(0) (sr"')     (6.4) 

and then minimize its influence by weighting the interpolation factors as: 

S(^^,A,,„,,, ) = ^h^^M.bi    factor (d^,A,) + -^-bi_ factor (^^^,^2)  (6-5) 

The interpolated R{0) is: 

^(0,^desired ) = 0 0 - Q) ■ R,iO) + Q ■ R^(0) (6.6) 

Finally, the new interpolated bifactor is the product of the new tilt function and the new R(0): 

bi _ factor (0^, A,„,,,, ) = R(0, A,„,,,, ) • S(^^, A,,,,„, ) (6.7) 

This should capture the changes in the shape of the effective tiU distribution function. If the 
material is a dielectric, then the interpolated bi_factor probably should not be altered further. The 
normal incidence Fresnel reflectivity is already contained in the bifactor, and it typically 
changes litfle with wavelength. If the material is a metal, then we will rescale the bifactor later 
during the renormalization as required. Does the angular spread in the BRDF vary linearly with 
increasing wavelength as the interpolation implies? The answer is probably No. But this 
approximation is probably better than making no effort to account for the narrowing of the BRDF 
as the wavelength gets longer. If more accuracy is required, then more BRDF data need to be 
taken at intervening wavelengths. 

The diffuse parameters R^ and R^ change with wavelength differently than the specular 
parameters. If the material is a metal, then we linearly interpolate them as we did in Equation 6.6 
for /?(0). If the material is paint, then they probably change according to pigment interactions 
independent of any first-surface effects. We linearly interpolate the difRise parameters in either 
case: 

RMdesired  ) = {^-^ ' Q)    RA^^) "^ Q ' RMl) (6.8) 
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^*ov(^.,>e.   ) =  (l-0-G)-^w(^l)+e-^*<,v(^2) (6-9) 

These parameters were extracted as a pair using a least-squares fit, and should probably always 
be treated as a pair when doing any linear rescaling. 

The shadow/masking parameters (r, Q) have a second order influence on the BRDF away from 
the specular direction. They are extracted using a least-squares fit and should probably be 
interpolated the same way the bifactor is: 

ri^^esire, ) = (1 -0 " g) ' ^(^1) + 0 " ^(^2 ) (6-10) 

^ihes^e, ) = (1.0 - S) • nW + Q • fi(A,) (6.11) 

The Fresnel indices of refraction should probably not be linearly interpolated independently of 
each other. Once again, without exphcit measurements at the desired wavelength, how do we 
choose them to both satisfy the reflectivity dependence and the polarization effects (e.g., the 
Brewster angle)? 

We want the polarization effects at the desired wavelength to be somewhere between those at the 
bracketing wavelengths. There are two options: hunt for a new index pair that generates an 
intermediate Fresnel curve, or simply pre-calculate a weighted normaUzed Fresnel curve based 
on the two normalized Fresnel curves at the bracketing wavelengths. The second approach is 
easier and more direct. 

Rss(^^s.e,    )  =   (i.0-Q)-Rssi^^)+QRss(^2) (612) 

Rpp(^.e,re.    )  =   (l -0  -  Q) ' R pA^^) +  Q   ' ^ PP i^l) (613) 

and we can extend this to the normalized Fresnel reflectivity: 

c- normalized      r o\       ^ SS iP' ^) p normalized       / o \ _   ^ PP (P'"^) (f. 1 A\ 

"^'^ ^^^=    RiO,A) " ^^^~     R(0,A) ^^    ^ 

The resulting interpolated normahzed Fresnel curve might not be physical, so we could again do 
a least-squares fit to find the closest physical index pair. However, this is unnecessary, since the 
error would be very small, and the normahzed Fresnel curves are a bit suspect from the 
beginning. 

6.2    Re-normalizing the BRDF to tiie DHR 

Now that we have our new estimates of the BRDF model parameter set, we can renormalize the 
BRDF model to match the measured DHR. The measured DHR is usually done with unpolarized 
broadband Ught. In principle all the scattered hght is captured and measured regardless of 
whether it is specular or diffuse, polarized or depolarized. Since the incident hght is unpolarized, 
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we will therefore need to use the unpolarized normalized Fresnel reflectivity in the specular 
BRDF integral used for normalization. 

The first-surface specular polarized total integrated reflectivity for normally incident light is 
given by: 

^specular   = J p' specular ■ COS( (9) • rfQ = l\ ^   '''"^ ^   ^^ ■ COS( 0) ■ sin( O)d0- d^ (6.15) 
hemisphere 2 

We use the average of the two polarized BRDFs because we assume equal 5 and P incident light 
(i.e., unpolarized). We assume, of course, that the material properties are isotropic in azimuth, so 
the outer integral reduces to ITT. The integral becomes: 

^specular = 2;r • J N,„p„„^{fi) L actor (g^)       s„i0i,,fi)cos(0)sm{0)d0     (6.16) 
0 COS( ffj = [)) ■ cos( 0^) ' 

Clearly/?= 612, ON= 612, 6,= 0, and ^;.= 6. In code we integrate Equation 6.16 numerically with 
a fine angular step. 

Next we integrate the diffuse unpolarized reflectivity: 

hemisphere 

This integral is analytic: 

o +2 ^^^ 
cos(^,>f cos(^^) 

•cos((9)rfQ (6.17) 

'^diffusei.0i) = ^-Rx + ^^ l + cos(^,)-ln 
''   cos((9,)   "^ 

J + cos(^,) ■Rho. (6.18) 

When the laser is incident at 6i= 0, this simplifies to: 

R^^r' iO) = ^R,+ 3.856026253 ■ /?,,, (6.19) 

If the material is a dielectric, then generally we do not want to change the first-surface (polarized) 
hemispherical reflectivity (Equation 6.16). The depolarized diffiise contribution to the 
hemispherical reflectivity, then, is the difference between the total reflectivity and the (small) 
first-surface contribution: 

R",^use (0) = DHR (0) - R'^Jff^';" (0) (6.20) 

Usually the first-surface specular reflectance is much less than the diffiise volumetric 
contribution for a dielectric. We rescale the two diffiise parameters equally to achieve the 
measured hemispherical reflectivity value: 
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rescale=   ^^']f^ (6.21) ^integrated (n\ 
'^diffuse        yy) 

Thus: 

R'T'= rescale ■ Rf (6.22) 

RZ:=rescale-RZ (6.23) 

When the measured hemispherical reflectivity DHR(O) is less than the first-surface integrated 
value alone (i.e., when the right hand-side of Equation 6.20 is negative), we rescale both the 
specular and the diffuse equally to meet the new DHR(O) (see below in Equation 6.24). Notice 
that in Equation 6.20, the diffuse reflectivity pretty much follows the total reflectivity as the 
wavelength changes. 

If the material is a clear dielectric (i.e., not a paint or pigmented plastic), then we should rescale 
both the specular and the diffiise equally to meet the new DHR(0) (see below in Equation 6.24). 

If the material is a metal, then we rescale both the specular and diffuse BRDFs equally. The 
reasoning here is that fiindamentally the Fresnel reflectivity drives the energy balance. There is 
no independent volumetric reflection process. So, if the total reflectivity at a different wavelength 
is higher, say, then both the specular and diffuse contributions must go up proportionally, since 
both are controlled at the microscopic level by Fresnel effects. 

We rescale by the ratio of new to old total reflectivities as: 

rescale = ""^^^"^^  (6.24) nint egrated    ,   nint egrated ^ ' 
specular diffuse 

We then apply this rescaling factor first to the bi_factor we interpolated in Equation 6.7: 

bi_factor„^(^;v ) = bifactor^y (dfj) • rescale (6.25) 

Equation 6.25 implies that every tabulated value for the bifactor must be rescaled. Finally, we 
rescale the diffuse parameters identically as they were in Equations 6.22 and 6.23 above. 

Note that if we are working a problem at a single wavelength (e.g., active laser illumination) 
where we have measured data, then whatever method we use to rescale (and therefore 
renormaUze the BRDF) should return exactly the measured parameters, unless the measured 
DHR(0) is sHghtly different fi-om the exti-acted BRDF parameters. This is usually the case. Since 
the independently measured DHR(0) is inherently more accurate, because it collects all the 
energy fi-om the hemisphere (and for reasons of consistency), we always renormaUze the BRDF 
model to the DHR(O). 
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In terms of the MATTER.DAT material properties database, the DHR(O) comes from an 
interpolation of the color curves for each material. For example, a typical surface property entry 
in the database would appear as: 

#  
SURF 0001 Aluminum Alloy, 2024-T3, Polished 
CAT Finishes 
SUBCATl Aliiminum Alloy, 2024-T3 
SUBCAT2 Polished 
Solar Abs 0.210 
Broad Em 0.030 
Surf Type 2 
BRDFS 
PH 
MB 
END 
1-Refl 
0.250 0.461 0.080 

10.600 0.030 0.007 
END 
REFLECTANCE 
0.20 0.3817 

14.00 0.9700 
END 
END SURF 
#  

The important entries are highlighted in red. It is the surface code that uniquely identifies this 
material, not its name, which follows the code. The surface type is 2, which is a metal. Type 1 is 
a dielectric paint. Type 3 is a clear dielectric such as glass. The two columns of data between the 
key words REFLECTANCE and END are the radiometric hemispherical reflectivities. The first 
column is the wavelength in micrometers; the second column is the reflectance value (0 to 1.0). 
These are measured values that are not a function of the BRDF or the surface roughness state. 

We always renormalize the BRDF to these values to ensure proper energy balance in our 
radiometric equations. The color table need not be fiilly populated. Intermediate values are 
interpolated lineariy, and not fit to a spline: 

DHR (A<,„,,,rf   ) = (1.0 - e) • DHR (A, ) + g ■ DHR (A^ ) (6.26) 

The BRDF parameters come from the BRDF section of the database. There are three formats for 
the three kinds of BRDF models. The one we are primarily interested in is the Maxwell-Beard 
BRDF data: 
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#  
BRDF_DEF_TASAT 0001 Aluminum Alloy, 2024-T3, Polished 
MODEL MaxBeard 
# The following Maxwell Beard data were added to support the 
multispectral study 
# This was copied from Aluminiun, NEFDS 
# This was copied from Kapton, Aluminized, 1 Mil, Kapton side out 
WL 0.6328 
Ndx 0.01 

Kap 0.49 

RXl 8.948E-03 

RX2 8.948E-03 

RHOV O.OOOE+00 

TAU 1.000E-f03 

OMEGA l.OOOE+03 

BISTATIC 
0.00 6 .350E+01 

0.10 5 .870E+01 

90.00 
■     • 

O.OOOE+00 

END 
END WL 

WL 1.0600 
Ndx 0.09 

•  •  • 
END WL 
END BRDF_DEF_TASAT 

In blue have we highlighted the BRDF code and name, and the model type. All three format 
types are intermixed with sequential material code numbers, hi green are the model parameters 
starting with the wavelength. After wavelength are the complex indices of refraction (Ndx, Kap). 
There are two redundant Lambertian diffuse parameters, RXl and RX2; the second is ignored. 
RHOV is the non-Lambertian diffuse parameter. The last two are the shadow/masking 
parameters (r, Q). In red is the bifactor tabular data: the first column is the bi-section angle ON 

in degrees. The second column is the bifactor (Equation 5.7). Because the BRDF for any 
material might be measured at several wavelengths, each measurement set ends with the keyword 
END WL. 

The Phong BRDF parameters follow next: 

#  
BRDF_DEF_TASAT 0002 Aluminum Alloy, 2024-T3, Mill Finish 
MODEL Phong 
PHONG 
0.63 5.00 0.50 
1.06 5.00 0.50 
3.39 5.00 0.50 
10.60 5.00 0.50 
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END 

END  BRDF_DEF_TASAT 

#  

Again in blue we have the material code, name, and model type keyword. In red are the BRDF 
parameters. The first column is the wavelength (in micrometers). The second column is the 
cosine exponent. Valid exponent values range fi-om zero to large positive values. A zero means 
the BRDF is strictly diffuse and depolarized. The third column is the Lambertian fraction for 
first-surface scatter. Values at wavelengths between those tabulated are lineariy interpolated. 

Relative to the MB BRDF data sets, there are missing or unknown parameters. First, there are no 
complex indices of refraction. The code defaults these according to the type of surface material. 
If it is paint, then the real index n is set to 1.5, and Kto 0.0. These are very typical and useful 
values that give a first-surface reflectance of 4%. If it is a metal, then the real index is set to 1.5, 
the normal incidence reflectance is assumed the same as the surface reflectance, and the code 
solves for AT using Equation 3.15. The Phong model does not model shadow/masking effects, so 
these parameters are not necessary. 

Because the Phong model also does not have diffuse parameters like the MB BRDF data set, we 
have to normalize the BRDF a little differently. First we need to construct and then normalize the 
bifactor. The tilt distribution function is: 

S(^;v) = cos''(^^) (6.27) 

Then we assume that the first-surface reflectivity Ro is that of a dielectric (which we default to 
4%). The rescale factor is 1 minus the Lambertian fi-action times the default reflectance: 

rescale =- ^ ~^)'^o  ("6 28) 

We then apply this rescaling factor to the bifactor: 

bi _ factor„^ (0^) = rescale ■ E(0^ ) (6.29) 

Then a diffuse R^ term is constructed: 

R~=  (6.30) X 

7t 

Next we take into account the material type. We use the same normalization procedures as those 
above in Equations 6.15 through 6.25. If the material is a paint, then we already have 
approximately the correct first-surface normalization for the specular component. The volumetric 
diffuse term R^ is rescaled to provide the overall reflectivity according to Equations 6.20 through 
6.22. If the material is a metal, then both the bifactor and R^ are equally rescaled according to 
Equations 6.22 through 6.25. 
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The Gaussian BRDF parameters follow next: 

BRDF_USER_DEF 9001 Shiney Surface (1 deg. 
MODEL Gaussian 

specular lobe) 

GAUSS 
0.63   0.0175   0 0   1 5 0 0 0 0 

1.06   0.0175   0 0   1 5 0 0 0 0 

3.39   0.0175   0 0   1 5 0 0 0 0 

10.6   0.0175   0 0   1 5 0 0 0 0 

END 

END  BRDF_USER _DEF 

#    

Again in blue we have the material code, name, and model type keyword, hi red are the BRDF 
parameters. The first colunrn is the wavelength (in micrometers). The second column is the 
Gaussian specular lobe angular size (sigma for the e""^ point). Valid sigma values range from 
1.745 X 10"^ radians (0.1 degrees) to large positive values. Smaller sigma values are considered 
unphysical, and lead to a defaulted totally diffuse BRDF. The third column is the Lambertian 
fraction for first-surface scatter. The fourth column is the real index n. The fifth column is the 
complex index K. The last colunrn is not used. Values at wavelengths between those tabulated are 
linearly interpolated. 

The unknown parameters are for the shadow/masking. But this model also does not model 
shadow/masking. Since the complex indices are specified, they are used in the same way as for 
the MB BRDF. However, we do need to normalize the specular bifactor the same way we did 
for the Phong model in Equations 6.27 through 6.30. 
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Figure 6.1. Integrated Hemispherical Reflectance for 
Black Chemglaze 

At normal incidence, our 
synthesized BRDF must have an 
integrated reflectivity equal to 
the interpolated color value 
assigned to this surface material. 
What about angle-of-incidence 
effects? The DHR is only 
quoted for normal incidence, 
and never quoted for other 
angles. How does the DHR of 
our modeled materials behave? 
This is an important topic. 
Figure 6.1 shows a plot of the 
integrated hemispherical 
reflectivity as a fimction of the 
incident laser angle. The green 

curve is the diffuse component, the red is the specular, and the blue is the total. Notice that the 
turn-up at larger angles is driven entirely by the specular component. Figure 6.2 plots the 
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Figure 6.2. Companion Normalized Fresnel Curves for 
Black Chemglaz 

normalized Fresnel curve for 
this material. Notice that it too 
turns up at the same angles, and 
grows by a factor of about 15 at 
86 degrees, which is how much 
the specular reflectivity grows. 
The assigned complex indices 
are (« = 1.5, K= 0), which are 
reasonable for a dielectric paint. 

However, consider material 
0048, Aluminum Alloy, 5456- 
H116, Clear Anodized. This is a 
metal where the indices are (« = 
1.52, /c= 0.55), which are 
frankly unreasonable. The 
normal incidence reflectance is 
about 9% for these values, 
whereas the material is about 
77% reflective at Ifim 
wavelength. Clearly these 
indices were fitted against some 
data. The problem comes with 
the DHR at the larger angles. 
Figure 6.3 shows the integrated 
hemispherical reflectivity. 
Notice that it goes above a 
reflectivity of 1 at 63 degrees. 
This is clearly imphysical. The 
final reflectivity is over 3. Figure 6.3. Integrated Hemispherical Reflectance for the 

Aluminum Alloy 

Because of the choice of indices, 
the reflectance should climb by more than 10 at grazing incidence, which in turn drives the 
specular reflectivity to over 1! This is the fallacy in choosing just any index pair that seems to fit 
measured directional intensity data. Errors in the measurements lead to bogus indices, which in 
turn model unphysical total reflectivities. This is why we propose choosing the indices by first 
matching the normal incidence reflectivity and then the apparent Brewster angle. 

Another subtle problem with these reflectivity curves is in the diffuse component for paint 
(Figure 6.1) and for metal (Figure 6-3). They are both constant in angle. This might be reasonable 
for metal, but not for paint. When the first-surface Fresnel reflection begins to dominate, less 
energy can penetrate into the volumetric region to rescatter into large diffuse angles. This means 
that the diffuse component should go down at the larger angles. This is a minor problem that is 
rooted in the basic MB BRDF model. 
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7.0    Estimating the Angular Width of the Specular Lobe 

Knowing the specular BRDF lobe angular width is important for certain rendering and 
radiometric operations. In LRST, for example, we paint the BRDF for a flat plate onto the 
Golden Sphere, pixel by pixel. The code needs to have an estimate of the size of the BRDF in 
order to know when to stop painting insignificant pixels that are at angles too far away fi-om the 
specular direction. There are two usefiil methods that, oddly enough, give different answers. The 
first is to find the angle at which the specular BRDF drops to some fraction of its peak on-axis 
value. This is the obvious method, but it is insensitive to the particular shape of the BRDF. The 
second technique builds a radial energy distribution (RED) and sets a threshold at a certain 
fraction of the integrated power. This would be a more usefiil measure for LRST because it will 
guarantee that, within a given angular radius, that fraction of the total specular energy has been 
painted, and therefore accounted for. Since diffiise energy is accounted for separately, it is not 
part of the determination for the lobe width. 

The intensity threshold searches for the angle at which the intensity drops below a percent of 
peak BRDF threshold: 

^obe = \p' (•9)}< threshold v;e«* (7-1) 

We start the search for the percent-integrated energy by creating the radial energy distribution 
RED(e): 

RED(^) = -^-fp'(^)-cos(^)sin(^)-rf^ (7.2) 
DHR  0 

which is a relative running normaUzation integral. When the RED exceeds the desired percent 
captured energy, that angle is used: 

9,^^^ = {RED(9) > threshold} (7.3) 

Figure 7.1 shows a RED for a moderately shiny material. The 50% power occurs at about 9.5 
degrees (radius), whereas the 50% intensity threshold occiu"s at about 9.7 degrees. 
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Figure 7.1. Left: Radial Energy Distribution for a Shiny Metal; Right: BRDF 
While Figure 7.1 shows the kind of behavior one would expect, this is not always the behavior 
one sees for some BRDFs. For example, consider the very shiny metal in Figure 7.2. The 
intensity width is determined to be about 0.7 degrees, but the RED angular width is about 11.3 
degrees! The BRDF shape is apparently very important to consider if we want to make sure we 
capture the majority of the scattered energy. 
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8.0    Using the BRDF 
Figure 7.2. RED and BRDF for Very Shiny Metal 

The usual objective of radiometric signature calculations is to predict the amount of power 
entering a receiver aperture, having scattered off a target body. The equations are rather simple, 
and they all stem from rearranging Equation 2.1. The equations that follow relate to small 
incremental surface areas that are flat and uniform. Sometimes when large areas are relatively 
flat, the smallness restriction can be lifted. We will also be interested in the definition and usage 
of the optical cross-section (defined differently from radar cross-section). 
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The lowest denominator in Equation 2.1 is defined as the incident irradiance. Consider a 
coUimated beam with irradiance /«(WattsW) that is incident on a flat surface element 5K (m) at 
an angle 6|. The total power intercepted by the surface element is: 

5Pi = I,-SA- cos(^,.) (Watts) (8.1) 

The denominator can be better expressed by: 

SP, /SA = I, ■ cosi0,.) (WattsW) (8.2) 

We now solve Equation 2.1 for the power collected by the receiving aperture SP/. 

SP^ = /„ •cos((9,.)yo' ■SAcos(0^)SQ^^^     (Watts) (8.3) 

We recognize the rightmost three terms as an Etendue' - the configuration factor: 

S^ =SA- cos( 0,)Sa,,, (m^-sr) (8.4) 

where the receiver aperture solid angle is: 

z 

and SAaperture IS the aperture collecting area, Ows is the angle between the aperture pointing line 
of sight (LOS) and the line to the target {0LOS is always assumed zero), and Z is the range to the 
target. We can also introduce the concept of radiance, J = lo-cos (0i)pf (Watts/m^-sr) and 
express the received power very compactly as: 

SP, = J • 5^ (W) (8.6) 

Since the BRDF is directionally dependent, we sometimes refer to J as the directional radiance. 
Equations 8.3 or 8.6 are the fundamental radiometric relations we need to make radiometric 
predictions. Because targets are so complex, we must code these equations and use ray-tracing 
techniques to sample the target shapes, and must do the target geometry incrementally. 

We need to define another important radiometric quantity, the optical cross-section x, as the 
ratio: 

= p'(^,.,^„<#,)•&!-cos(^,)-cos(^,)       (m^/sr) (8.7) 
h-SQ. rec 

where we have rearranged Equation 8.3 to separate the target-specific attributes. The cross- 
section is strictly a fiinction of the target shape, its material properties, the illumination geometry, 
and the viewing geometry, and nothing else. Figure 3.1 shows the basic geometry assumed for 
Equation 8.7. 
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For complex target scattering geometries, in practice we can calculate the total cross-section by 
integrating (summing) over many small differential surface area elements: 

X = = Zp' ■SA-cos{ei)co%{9 ) (mVsr) (8.8) 

or, put into integral form: 

X = \p' ■cos((9,)cos((9 )dA (m^/sr) (8.9) 

When the irradiance is not uniform over the entire target, then the measured or apparent cross- 
section will become a function of the irradiance profile, hi this case we would need to include the 
unit-irradiance beam profile into the calculation of the incremental cross-section contributions. 

If we know the cross-section, we can always invert Equation 8.7 to predict the power at the 
receiver: 

SP., x-io-sci, (Watts) (8.10) 

where !„ now represents the peak on-axis irradiance. The scattered intensity at the receiver 
aperture is: 

/        =  ^^rec 

SA, = X~=p' {0i,e,J,)SAcos {9, )■ cos {e, )• \ (Watts) (8.11) 

In Figure 8.1 we render a typical BRDF and scattered intensity in 3D as an iso-intensity surface. 
Notice the spread of the BRDF near the plane of the material. This is the usual ttim-up of the 
BRDF at grazing angles where the denominator of the specular BRDF explodes because of the 
co%(er) term. On the right we rendered the intensity profile. The cosine in the numerator now 
cancels this turn-up, as expected. 

Figure 8.1. Rendered 3D BRDF; the image on the left is the BRDF; the yellow box is the laser 
Source; the image on the right is the cross-section (intensity) 
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The lower intensity (blue) colors are due to the diffuse BRDF contribution. The yellow and red 
colors show the specular BRDF contribution. Figure 8.2 shows the same BRDF but with the 
fimctional values displayed on a hemispheric dome. 

Figure 8.2. Same BRDF and Cross-sections Displayed on a Hemisphere 

One of the interesting effects of scattering at grazing incidence is how the BRDF will become 
narrower along the cross-plane direction. The narrowing of the BRDF is caused by the rapid 

SB 
increase in the bi-section angle {ON) motion due to the optical gain SO^^ = ^^f—. Since fi is 

2 • cos{p) 
near 90 degrees, the change in the bi-section angle is large for even small observer motions cross- 
plane. At the same time the BRDF is getting narrower, there is a cosine in the specular BRDF 
denominator that is also increasing its magnitude. The combined effect when integrating the total 
power is to keep it constant. 

Figure 8.3. Typical BRDF at Near Normal Incidence on Left, and Grazing at Right 
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Figure 8.4 shows calculated BRDF slices at 75-degree incidence. The red curve is the in-plane 
BRDF, and the green curve is the cross-plane scan (a scan perpendicular to the in-plane scan). 

Figure 8.5 demonstrates the growth of the BRDF with increasing angle of incidence. In this case, 
the normalized Fresnel curves do not change very much, so the grov^h is caused primarily by the 
cosine in the denominator. 
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Figure 8.4. In-plane BRDF (Red) and Cross-plane BRDF (Green) at 75-Degree Incidence 
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Figure 8.5. Growth of the BRDF Peak with Increasing Angle of Incidence 
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